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Abstract

Epacl-camps cyclic nucleotide sensitivity.

Background: Approximately 40% of prescribed drugs exert their activity via GTP-binding protein-coupled receptors
(GPCRs). Once activated, these receptors cause transient changes in the concentration of second messengers, e.g.,
cyclic adenosine 3'5-monophosphate (CAMP). Specific and efficacious genetically encoded biosensors have been
developed to monitor cAMP fluctuations with high spatial and temporal resolution in living cells or tissue. A well
characterized biosensor for cCAMP is the Forster resonance energy transfer (FRET)-based Epacl-camps protein.
Pharmacological characterization of newly developed ligands acting at GPCRs often includes numerical
quantification of the second messenger amount that was produced.

Results: To quantify cellular cAMP concentrations, we bacterially over-expressed and purified Epacl-camps and
applied the purified protein in a cell-free detection assay for cAMP in a multi-well format. We found that the
biosensor can detect as little as 0.15 pmol of cCAMP, and that the sensitivity is not impaired by non-physiological salt
concentrations or pH values. Notably, the assay tolerated desiccation and storage of the protein without affecting

Conclusions: We found that determination cAMP in lysates obtained from cell assays or tissue samples by purified
Epacl-camps is a robust, fast, and sensitive assay suitable for routine and high throughput analyses.
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Background

Signaling within and between cells often invokes transi-
ent and spatially restricted changes of intracellular sec-
ond messenger concentrations. In addition to calcium
(Ca®*) signals, changes in intracellular concentrations of
cyclic adenosine 3,5'-monophosphate (cAMP) or cyclic
guanosine 3’,5'-monophosphate (cGMP) play an im-
portant role in cell signaling. As second messengers, cyc-
lic nucleotides are known to control the activity of
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protein kinases and phosphatases as well as Popeye do-
main containing (Popdc [6];) proteins. Kinases and phos-
phatases then modulate the phosphorylation status of
downstream proteins participating, e.g., in cellular traf-
ficking, metabolic uptake mechanisms as well as regula-
tion of gene transcription (reviewed in: [22, 37]).
Furthermore, cyclic nucleotides have been shown to ei-
ther directly activate cyclic nucleotide-gated ion
channels in many cells, including photoreceptors and
sensory neurons (reviewed in: [3, 21]) or to shift the
voltage-dependent activation of hyperpolarization-
activated and cyclic nucleotide-gated ion channels in
neurons and cardiac tissue (reviewed in: [4, 18, 20]).
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To gain insight into cellular second messenger
dependent signaling, several strategies can be followed
to quantify second messenger concentrations under dif-
ferent experimental conditions. Mean values of such
concentrations can be obtained when examining cell or
tissue lysates. Typically, competition binding experi-
ments are performed where the compounds present in
the lysate compete with a radiolabeled substrate for a
binding site present on a specific binding protein [9, 16]
or an antibody [13]. Alternatively, immunoassays have
been developed where compounds, e.g. cAMP, present
in the lysate compete with chemically modified cAMP
molecules [17] for a binding site on a specific antibody.
Detection occurs via another set of antibodies that
recognize the modified but not the native compound.
These secondary antibodies typically are coupled to an
enzyme that metabolizes a substrate which then emits
luminescence [11]. A large community is applying these
strategies to quantify cyclic nucleotide concentrations
upon exposing cells or tissue to different external condi-
tions as well as in high throughput screening assays.
However, a drawback of many of these approaches is a
relatively long hands-on time which, in some cases, re-
quires overnight incubation steps.

In recent years, the development of genetically
encoded sensors has revolutionized the field and
allowed to measure changes in second messenger
concentrations with high spatial and temporal reso-
lution at the cellular level [15, 24, 27, 31]. One well-
known detector of cAMP is Epacl-camps [26]. This
protein allows Forster resonance energy transfer
(FRET)-based measurements in single cells. It harbors
a central cAMP-binding domain originating from
Epacl [12] that is N-terminally fused to an enhanced
yellow fluorescent protein (EYFP) and C-terminally
linked to an enhanced cyan fluorescent protein
(ECFP). In the absence of cAMP both fluorescent
proteins are in close contact. Thus, when the donor
fluorophore ECFP is excited at 430 nm, the acceptor
fluorophore EYFP is excited via FRET and emits
fluorescence that can be measured at 530 nm. Once
the intracellular cAMP concentration increases, cCAMP
binds to the Epacl domain of the sensor. This in-
duces a conformational change by which the ECFP
and EYFP moieties move away from each other. Con-
sequently, upon ECFP excitation less energy is trans-
ferred to EYFP, and the EYFP emission decreases
whereas simultaneously the ECFP emission (475 nm)
increases [26].

Since we are interested in determining changes in cyc-
lic nucleotide concentrations not only in individual cells,
we decided to examine the applicability of Epacl-camps
to substitute for currently available detection methods to
quantify second messengers like cCAMP. To achieve this
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goal, we expressed Epacl-camps in E.coli cells and puri-
fied the protein by Ni-NTA- and size-exclusion chroma-
tography. Purified protein was assessed for sensitivity
and specificity in 96 multi-well plates (MWPs) by adding
concentration series of cCAMP or cGMP. Changes of the
sensor’s fluorescence were registered in a plate reader.
With ECso values of 1.3pM (cAMP) and 7.8puM
(cGMP), Epacl-camps showed preferred interaction with
cAMP. Yet, interaction with cGMP is not negligible.
Under the chosen experimental conditions, the threshold
amount for cAMP detection was = 0.15 pmol. The func-
tionality of the assay was not affected by different salt
concentrations or pH values. Notably, purified Epacl-
camps protein could be dried in the MWP and stored at
4°C until further use. After re-constitution, the sensors’
activity was fully preserved. Based on the sensitivity, sta-
bility, as well as short handling and incubation times,
the assay is equivalent if not advantageous in compari-
son to currently available methods.

Results

Expression and purification of Epac1-camps-Hisg

A C-terminally Hiss-tagged Epacl-camps cDNA was
cloned in pET1la expression vector. Protein expression
was performed with BL21(DE3) plysS and BL21(DE3)-
CodonPlus-RIL E.coli strains. For induction of protein
expression, a final concentration of 1 mM IPTG was ap-
plied and culture growth was continued at 37 °C for 4 h,
at 30°C overnight, and at 20 °C overnight. The highest
expression rate was with BL21(DE3)-CodonPlus-RIL
cells and at 30°C with overnight expression. After cell
lysis the Epacl-camps-Hisg protein was enriched by Ni-
NTA affinity chromatography. Typically, up to 10 mg
protein were purified from a 500 ml expression culture.
Fractions containing the sensor protein were combined
and subjected to size exclusion chromatography to fur-
ther purify the sample. Aliquots from eluate fractions
were analysed by SDS-PAGE. The combined strategy of
Ni-NTA affinity and size exclusion chromatography re-
sulted in highly pure and homogenous preparations of
Epacl-camps-Hisg, which was advantageous to establish-
ing the cyclic nucleotide quantification assay.

Interaction of Epac1-camps-Hisg and cyclic nucleotides

Binding of cyclic nucleotides results in a change of the
fluorescence emission of the Epacl-camps FRET sensor
[26]. To assess the functionality of the purified Epacl-
camps-Hisgs protein, the protein was diluted to 0.7 uM
and 90 pl of this solution was added to each well of a 96
multi well plate (MWP). Fluorescence emission in each
well was measured in a plate reader. Excitation was at
430 nm and emission was recorded at 475 nm (ECFP)
and 530 nm (EYFP). After recording the basal fluores-
cence for ECFP and EYFP, series of increasing
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concentrations of cAMP or cGMP were added to
each well. The final volume in each well was 100 pl,
and final concentrations of cyclic nucleotides ranged
from 10”° - 10"*M. Incubation of the sensor pro-
tein with its ligands was for 30min. at room
temperature. Then, the EYFP/ECFP emission ratio
(R) for each well was determined and normalized to
the emission ratio of the basal fluorescence, i.e., in
the absence of cAMP or cGMP (R,). Normalized
data were plotted against cyclic nucleotide concen-
trations and ECs, values were calculated. In Fig. 1 a
representative measurement is shown. Mean values
with standard deviations were obtained from four-
fold determinations for each cyclic nucleotide. With
increasing concentrations of cAMP and cGMP the
FRET-based emission of EYFP decreases. The re-
sponses saturated at >10"°M (cAMP) and >3 x 10" °
M (cGMP). The ECs, values obtained from these
concentration response curves for cAMP and cGMP
were 1.3x10°°M and 7.8x10°°M, respectively.
Similar results were obtained in at least three inde-
pendent measurements performed on two protein
preparations that were independently expressed and
purified.
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Fig. 1 Characterization of Epacl-camps-Hise in multi-well plates.
Purified Epac1-camps-Hisg protein was diluted to a concentration of
0.7 UM in IS buffer and 90 pl of the sample was added to each well
of a 96 multi well plate. Excitation was at 430 nm and emission was
recorded at 475 nm (ECFP) and 530 nm (EYFP). After recording the
basal fluorescence for ECFP and EYFP, increasing concentrations of
cAMP or cGMP were added to each well. The final volume was

100 pl and final concentrations of cyclic nucleotides ranged from
1077 - 10~ * M. The EYFP/ECFP ratio (R) for each well was calculated
and normalized to the ratio of the basal fluorescence in the absence
of cyclic nucleotides (Ro). Normalized data were plotted against
cyclic nucleotide concentrations. Each data point is given as mean
value (£SD) from four identically treated wells of a representative
experiment. ECs, values were calculated with a four-parameter
nonlinear regression using GraphPad Prism v5.04

Page 3 of 10

Measurements with different salt concentrations

In the experiments depicted in Fig. 1, cyclic nucleotides
were added in regular IS buffer. Under experimental
conditions, however, cyclic nucleotides originating from
cell or tissue extracts may contain higher or different salt
concentrations. Therefore, we performed a similar assay
as shown in Fig. 1 and used IS buffer containing 135
mM or 300 mM potassium gluconate. The results are
shown in Fig. 2. The behavior of the sensor protein to
cAMP was very similar for both salt concentrations. The
EC50 determined at 300 mM potassium gluconate is
slightly shifted to a lower value of 8.4x 10"’ M com-
pared to 1.0 x 10"®M determined in regular IS buffer.
Thus, the sensitivity of purified Epacl-camps-Hiss pro-
tein was rather stable which would allow measuring
samples containing different salt compositions. However,
rather than to directly compare results at physiological
(135 mM) or high (300 mM) salt concentrations the ex-
periments were performed to test Epacl-camps capabil-
ity to register cAMP amounts at different ionic
strengths. Thus, it is vital to establish the calibration
curve and to conduct sample measurements using iden-
tical buffer conditions.

Measurements at different pH values

Similar to the experiments performed with different salt
concentrations, the impact of buffers with different pH
on Epacl-camps-Hiss to register cAMP concentrations
was examined. Here, experiments were conducted in IS
buffer at pH6.3 and 8.5. All previous measurements
were in IS buffer at pH 7.4. The result is shown in Fig. 3.
Protein was diluted in the respective buffer (pH 6.3 or
8.5) and transferred into 48 wells of a 96 MWP, allowing
four-fold determinations for the cAMP concentration
series. Under both conditions the cAMP-dependent re-
sponse of Epacl-camps-Hiss was very similar reaching
saturation at cAMP concentrations >10"°> M. Notably,
ECs, values of 1.3x10°*M (pH6.3) and 1.0x10"°M
(pH 8.5) were almost identical to those determined in IS
buffer at pH 7.4 (see Fig. 1). Therefore, samples deviating
by at least one order of magnitude to the acidic or alka-
line range from the physiological pH (=7.4) can be ap-
plied and examined. However, since GFP and its
mutants are known to be sensitive to pH (see, e.g., [8,
23]), it is necessary to calibrate and to perform each
measurement at the same pH value.

Measurements with desiccated and re-constituted sensor
protein

In order to gain information about stability and conceiv-
able storage conditions of Epacl-camps-Hiss, experi-
ments were performed on purified protein that was
desiccated in 96 MWPs. As for the previous experiments
the protein was diluted to 0.7pM and 90pl of the
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Fig. 2 Change of cAMP-dependent Epaci-camps-Hiss fluorescence at different salt concentrations. For measurements depicted in this graph, an
independently expressed and purified Epaci-camps sample has been used (cf. Figure 1). Purified Epac1-camps-Hise protein was diluted to a
concentration of 0.7 uM in IS buffer containing 135 mM (-) or 300 mM (mm) potassium gluconate. 90 ul of each sample was added to 48 wells of a
96 multi well plate allowing simultaneous four-fold measurements. Excitation was at 430 nm and emission was recorded at 475 nm (ECFP) and
530 nm (EYFP). After recording the basal fluorescence for ECFP and EYFP, increasing concentrations of cCAMP were added. The EYFP/ECFP ratio (R)
for each well was calculated and normalized to the ratio of the basal fluorescence in the absence of cAMP (R,). Normalized data (mean values +

Prism v5.04

SD) were plotted against CAMP concentrations. ECs values were calculated with a four-parameter nonlinear regression using GraphPad

solution was transferred into each well of a 96 MWP.
Desiccation of the protein was achieved in a fridge at
4°C. Whether the functionality of Epacl-camps-Hisg
was affected by this treatment was assessed once the
desiccated protein was re-constituted. For solubilisation
of the protein, bi-distilled H,O was applied to 48 wells
and TE buffer (10 mM Tris/HCl, pH7.4; 1 mM EDTA)
was applied to the remaining 48 wells of the plate. A
concentration series of cAMP was applied and the
cAMP-dependent response of Epacl-camps-Hisg was

measured. As depicted in Fig. 4 the protein was
successfully re-constituted and displayed the typical
cAMP-dependent decrease of the FRET signal. It is
worth noting that testing samples stored desiccated
for 3 weeks at 4°C were as active as samples pre-
pared from frozen protein stocks. As already men-
tioned for measurements performed at different salt
concentrations or pH values, it is necessary also with
desiccated samples to establish and keep experimental
conditions constant. This would allow to directly
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Fig. 3 Change of cAMP-dependent Epaci-camps-Hise fluorescence at different pH values. Purified Epacl-camps-Hisg protein was diluted to a
concentration of 0.7 uM in IS buffer with pH 6.3 or 85. 90 pl of each sample was added to 48 wells of a 96 multi well plate allowing simultaneous
four-fold measurements. Excitation was at 430 nm and emission was recorded at 475 nm (ECFP) and 530 nm (EYFP). After recording the basal
fluorescence for ECFP and EYFP, increasing concentrations of cAMP were added. The EYFP/ECFP ratio (R) for each well was calculated and
normalized to the ratio of the basal fluorescence in the absence of cAMP (R,). Normalized data (mean values + SD) were plotted against cCAMP
concentrations. ECsq values were calculated with a four-parameter nonlinear regression using GraphPad Prism v5.04. A representative of two
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Fig. 4 Change of cAMP-dependent Epac1-camps-Hiss fluorescence using desiccated and re-constituted samples. Purified Epac1-camps-Hisg
protein was diluted to a concentration of 0.7 uM in IS buffer, transferred to all wells of a 96 MWP, and desiccated in a fridge. Protein in 48 wells
was reconstituted in bi-destilled H,O and protein in the remaining wells was reconstituted in TE-buffer. This design allowed simultaneous four-
fold measurements. Excitation was at 430 nm and emission was recorded at 475 nm (ECFP) and 530 nm (EYFP). After recording the basal
fluorescence for ECFP and EYFP, increasing concentrations of cCAMP were added. The EYFP/ECFP ratio (R) for each well was calculated and
normalized to the ratio of the basal fluorescence in the absence of cAMP (R,). Normalized data (mean values + SD) were plotted against cCAMP
concentrations. ECsq values were calculated with a four-parameter nonlinear regression using GraphPad Prism v5.04. A representative of two

comparing data sets obtained from independent series
of experiments.

Measurements with probes obtained from cell cultures

So far all measurements were performed with chemically
pure cCAMP or cGMP solutions. In order to examine the
assay’s usability for cell derived probes we prepared ex-
tracts from a cell line in which cAMP production was
induced by a GPCR-mediated signaling cascade. We
used a previously established cell line that constitutively
expresses an octopamine receptor from Drosophila mel-
anogaster (DmOCctBIR [2];). Octopamine is a biogenic
amine mainly present in protostomes and is a homolog
of catecholamines in mammals [32]. The phenolamine
binds to GPCRs that activate different intracellular sig-
naling pathways. When a-type octopamine receptors are
activated, this results in Ca®* release from the endoplas-
mic reticulum. When p-type octopamine receptors, like
DmOCtP1R, are activated, this results in cAMP produc-
tion via adenylyl cyclases ([2]; see also [5]). The cell line
expressing DmOCctP1R was seeded in 24 MWPs and a
concentration series of octopamine (10™° — 10"*M to-
gether with 100 uM IBMX) was applied. After incuba-
tion for 30 min at 37 °C, the ligand-containing solution
was aspirated and cells were lysed in ice-cold ethanol.
The ethanolic suspension was lyophilized, reconstituted
in H,O and then added to Epacl-camps-Hisg protein in
a 96 MWP as described for the previous assays. A cali-
bration curve was established with known cAMP con-
centrations and the amount of cAMP in cell extracts
were plotted against the octopamine concentrations.
The result of a representative measurement and its

derived concentration-response curve is depicted in
Fig. 5. Data points (mean values + SD) were derived
from quadruplicate determinations for each octopamine
concentration. The delineated ECs, of 2.5 x 10" 8 M for
octopamine is very similar to previous pharmacological
data determined on this receptor (=3 x 1078 M, [2, 25)).
This result demonstrates that the assay employing puri-
fied Epacl-camps-Hise is fast, sensitive and well suited
to quantify second messenger concentrations that origin-
ate, e.g., from cell-based assays or tissue extracts to es-
tablish pharmacological and functional profiles of
membrane receptors.

Discussion
Here we used the optogenetic sensor protein Epacl-
camps and established a sensitive and fast detection
assay to determine cAMP concentrations originating
from cellular signaling cascades. Fluorescence emission
signals were read out in a plate reader using conven-
tional 96 MWPs. With a detection limit of =0.15 pmol
(see Fig. 1) the assay is well suited to quantify cAMP
concentrations extracted from ca. 250,000 cells.
Transient and dynamic fluctuations of intracellular
second messenger concentrations like cyclic nucleotides
or Ca** are at the heart of cellular signaling circuits, es-
pecially in neural tissue [19]. Thus, when studying func-
tional and physiological effects of cellular signal
transduction processes, an ultimate aim is to quantify
the concentration changes of these messengers upon a
certain stimulus. Often, intracellular second messengers
are controlled by the activity of G-protein coupled re-
ceptors [29]. In humans, this group of membrane
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Fig. 5 Quantification of CAMP produced by GPCR activation. A cell
line constitutively expressing an octopamine receptor from
Drosophila melanogaster (HEK293 — DmOCctB1R) was incubated with
increasing concentrations (1077 = 10”* M) octopamine in a 24 MWP
for 30 min at 37 °C. Cells were lyzed by adding ice-cold ethanol.
Extracts were lyophilized, reconstituted in H,O and the amount of
cAMP was determined with purified Epac1-camps-Hisg protein as
described before. Excitation was at 430 nm and fluorescence
emission was recorded at 475 nm (ECFP) and 530 nm (EYFP). After
recording basal fluorescence emission for ECFP and EYFP, samples
were added and incubated for 30 min at room temperature. Finally,
the EYFP/ECFP ratio (R) of fluorescence emission for each well was
calculated and normalized to the ratio of the basal fluorescence
emission (Ro). Using a calibration curve established with known
cAMP concentrations in parallel, the cAMP amount present in each
sample was determined. Mean values (+ SD) from quadruplicate
determinations were plotted against octopamine concentrations.
The ECyg value (2475 x 1078 M) of DmOCtB1R was calculated with a
four-parameter nonlinear regression analysis using GraphPad Prism
v5.04. A representative of three independently performed
experiments is shown

receptors is the target of up to 40% of prescription medi-
cines [38]. Consequently, there is ongoing interest to
examine chemical libraries for candidates acting as ago-
nists or antagonists on specific receptors to uncover
beneficial new drugs and/or new drug targets. In recent
years platforms have been developed allowing high
throughput screening of such libraries, typically employ-
ing cell-based strategies with colorimetric read out [1,
28]. More recently, microfluidics in combination with
high resolution imaging [10] has been introduced which
allows to monitor effects at the individual cell level. Such
approaches require development and maintenance of
highly sophisticated equipment and analysis tools ren-
dering strategies time consuming and expensive. Thus,
alternative approaches to quantify GPCR-induced sec-
ond messenger signals are still needed.

Here we focused on cAMP as a pivotal component of
cellular signaling [37]. Typically, quantification of cCAMP
concentrations is performed using cytosolic extracts
from cells or tissue. Such extracts can be applied, e.g., to
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high performance liquid chromatography (HPLC) and
the cAMP concentration is calculated from a calibration
curve obtained with standards of known concentration
(e.g., [30]). However, mainly due to chromatography
run-times this approach faces drawback especially when
large sample numbers have to be handled. A reasonable
alternative to HPLC separation is to apply either com-
petitive binding assays to cAMP-binding proteins or
cAMP-directed antibodies. Typically measurements are
performed either with [®H]- or [**°1]-cAMP as competi-
tors [7, 9, 13]. Both approaches have been successfully
and frequently applied in the last decades. The sensitiv-
ity of these assays allowed detection of fmol to pmol
cAMP amounts. However, assay procedures typically re-
quire hours or overnight incubations and special
equipment for storage, handling as well as discarding
radioactive material and waste. It is noteworthy, that
radiolabeled components meanwhile have been replaced
by fluorescently labeled compounds (see, e.g., [11]), vet,
experimental duration remained unaffected.

The discovery and development of optogenetic sensors
and tools (reviewed in: [33]) finally paved the way to a
new era for determining the dynamics of cellular signal-
ing molecules. Currently, a large repertoire of sensors is
available to monitor and examine fluctuations of second
messengers and these sensors can be directed on de-
mand to or into sub-cellular compartments [34—36].
Typically, sensors contain one to two fluorescent
moieties that change their fluorescent properties upon
interaction with a specific ligand. In combination with
high resolution fluorescence microscopy, sensors are
applicable for cell-based assays, provided that the genetic
material coding for the sensor was successfully intro-
duced into the cell or tissue [14].

To overcome limitations in applying optogenetic sen-
sors for quantifying cAMP amounts in cell or tissue
extracts, we optimized an expression and purification
protocol for the cAMP sensor Epacl-camps. Affinity-
followed by size-exclusion chromatography resulted in
protein preparations of high yield and purity. We trans-
ferred purified protein to 96 MWPs resulting in an assay
format applicable for high sample throughput. The sen-
sor’s performance at different potassium concentrations
and pH values was evaluated by measuring its fluores-
cence emission in a plate reader. Notably, measurements
were conducted 20 to 30 min after adding the cyclic nu-
cleotides representing a tremendous improvement in
saving experimental time compared to approaches like
HPLC or competitive binding assays. Neither salt con-
centrations up to 300 mM nor pH values ranging be-
tween 6.3 and 8.5 affected the sensor’s sensitivity to
cAMP. Nevertheless, a prerequisite to generating data
sets and comparing results from independent series of
experiments is to keep assay conditions constant with
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respect to salt type and concentration, pH values, as well
as solvents used for re-constitution of the sensor. Inter-
estingly, we observed binding of Epacl-camps to cGMP,
yet, with almost 10-fold lower affinity. Since cellular
cGMP concentrations are much lower than cAMP con-
centrations under physiologic conditions, a cGMP “con-
tamination” most likely does not compromise the assay.
Using extracts from cell cultures in which cAMP pro-
duction had been induced in a GPCR-dependent fashion
showed that the assay was well suited to calculate
concentration-response relationships and to determine
the GPCR’s ECs,. Furthermore, purified protein could
be transferred into 96 MWPs, dried, and re-constituted
without losing the sensors’ sensitivity even after several
weeks of storage at 4 °C. Therefore, we expect that the
rather simple expression and purification protocol for
Epacl-camps-Hisg protein in combination with the pro-
tein’s sensitivity and stability — even after storage in
dried form - and versatile measuring format in 96
MWPs will support applications striving for robust, reli-
able, sensitive, and fast results in determining concentra-
tions of cyclic nucleotides.

Conclusions

Evaluation and quantification of intracellular signaling
molecules, like cyclic nucleotides, is frequently used in
bio-pharmaceutical tests studying, e.g., ligand-dependent
GPCR activities. Here we examined and established an ex-
perimental setup that allows determination of cAMP in ly-
sates obtained from cell-based assays or tissue samples
using a bacterially overexpressed and purified FRET-based
sensor protein, i.e. Epacl-camps. A two-step purification
protocol by Ni-NTA followed by SEC resulted in milli-
gram amounts of functionally active sensor protein. Assay
conditions were evaluated with respect to different salt
concentrations and pH values. Comparable and valid data
can be obtained once the assay conditions are kept con-
stant. With a detection threshold of ~0.15 pmol, the assay
was sensitive enough to determine cAMP amounts in ly-
sates obtained from approximately 250.000 cells in which
cAMP production was induced by GPCR activation. Not-
ably, the protein could be desiccated and reconstituted in
96 MWPs without loss of functionality and sensitivity. In
comparison to currently available cyclic nucleotide detec-
tion assays that require several hours of handling, stable
fluorescence measurements were achieved within 30 min
upon adding samples to Epacl-camps suggesting that the
assay is suitable for routine and high throughput analyses.

Methods

Cloning an Epac1-camps construct for bacterial
expression

For protein expression in E.coli cells the pcDNA3 plas-
mid containing the Epacl-camps encoding cDNA [27]
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was modified by PCR by adding a sequence coding for a
hexa-histidine tag (Hiss-tag) at the C-terminus. The
Epacl-camps construct was cut into EYFP- and ECFP-
encoding fragments by HindlIll/Xbal and Xbal/BamH],
respectively, to prevent unspecific primer binding.
Fragments were used as templates for individual PCR re-
actions to introduce a suitable restriction site to the 5'-
end (Ndel) and a Hise-tag followed by a stop codon and
a BamHI restriction site to the 3’-end. The following
primers were used for amplification:

N-term (fwd) 5-AAAACTCGAGCATATGGTGAG-
CAAGGGCGAGGAG,

N-term (rev) 5'-GCTCACTCTAGATTCCAGCCGC
ATGGTCTT,

C-term (fwd) 5'-GGAATCTAGAGTGAGCAA
GGGCGAGGA, and C-term-Hisg (rev)

5-TTTTGGATCCCTAATGATGGTGATGGTGAT
GCTTGTACAGCTCGTCCATGCC.

For amplification the KOD Hot Start DNA Poly-
merase (Merck, Darmstadt, Germany) was used ac-
cording to the supplier’s protocol. Template DNA
was initially denatured for 5min at 94 °C, followed by
20-30 repetitive cycles consisting of 1min denatur-
ation at 94°C, and 1min primer hybridization to the
template. Elongation was performed at 72°C for 45s.
Hybridization was performed at the melting
temperature (T,) of the primer with the lower T,,
for 1 min. PCR products were digested with restric-
tion enzymes Ndel/Xbal for the EYFP- and Xbal/
BamHI for the ECFP-encoding fragment. After agar-
ose gel purification, fragments were ligated into
pET11a vector (Novagen, Merck Chemicals, Notting-
ham, UK) and sequenced.

Expression of recombinant proteins in E.coli
Overexpression of Epacl-camps-Hiss protein was per-
formed in E.coli strains BL21(DE3)-pLysS (Merck) and
BL21(DE3)-CodonPlus-RIL (Stratagene/Agilent, Santa
Clara, CA, USA) that had been transformed with the re-
combinant plasmid (pET1la-Epacl-camps-Hisg). As
these strains carry a chloramphenicol resistance, they
were cultivated in antibiotic containing media. 500 ml
LB media containing chloramphenicol (50 pg/ml) and
ampicillin (100 pg/ml) were inoculated with an E.coli
overnight culture and cultivated at 37°C in a shaker
(Unitron; Infors, Bottmingen, Switzerland) until an
ODgqo between 0.4 and 0.6 was reached. Protein expres-
sion was induced with 1 mM isopropyl-p-D-thiogalacto-
pyranosid (IPTG). Induced bacterial cultures were
grown either at 37 °C for 4h, at 30°C overnight, or at
20°C overnight. Cells were harvested by centrifugation
(Sorvall Evolution RC, SLA 3000 rotor, 5000 g, 15 min,
4°C), snap frozen in liquid N, and stored at — 80 °C.
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Ni-NTA purification of Epac1-camps-Hisg

All solutions were supplemented with cOmplete™
EDTA-free Protease Inhibitor Cocktail Tablets (Sigma-
Aldrich/Merck, Darmstadt, Germany). The bacterial cell
pellet was re-suspended in NPI-20 buffer (50 mM
NaH,PO,, 300 mM NaCl, 20 mM imidazole, pH 8.0; 3
ml/g pelleted cells). Prior to an incubation step for 30
min on ice, lysozyme (1 mg/ml) and DNase I (= 0.5 mg;
#A3778; Applichem, Darmstadt, Germany) were added.
The suspension was sonicated 10 times for 15s at 40%
amplitude (Branson Sonifier, model W-450D, tapered
microtip; Branson, Danbury, CT, USA) followed by cen-
trifugation (Sigma 2K15, 10,000g, 45min, 4°C). The
supernatant was used for purification of the Epacl-
camps-Hisg fusion protein via Protino® Ni-NTA Agarose
(Macherey & Nagel, Diiren, Germany). 1 ml of Ni-NTA
agarose was transferred to a 50ml reaction tube and
equilibrated with 10 bed volumes of NPI-20 buffer. The
matrix was pelleted by centrifugation (Sigma 3-16K,
500 g, 5min, 4°C). The supernatant containing Epacl-
camps-Hiss was added to the matrix and agitated on a
shaker for 30 min at 4°C. The sample was centrifuged
(Sigma 3-16 K, 500 g, 5 min, 4°C). The supernatant was
removed and the matrix was suspendend in 10 bed vol-
umes NPI-30 buffer (50 mM NaH,PO,, 300 mM NaCl,
30 mM imidazole, pH 8.0). The matrix was collected by
centrifugation (Sigma 3-16 K, 500 g, 5 min, 4 °C) and the
washing step was repeated. The matrix was re-
suspended in 5ml NPI-30 buffer and transferred into a
Poly-Prep® Chromatopraphy Column (Bio-Rad, Munic,
Germany). Finally, the recombinant protein was eluted
with 5 bed volumes NPI-150 buffer (50 mM NaH,PO,,
300 mM NaCl, 150 mM imidazole, pH 8.0). Aliquots of
all purification steps were kept for further analysis.

Size exclusion chromatography (SEC)

For further purification of the recombinant protein, size
exclusion chromatography (SEC) was employed. A
HiLoad 16/600 Superdex 200 column (GE Healthcare/
Merck, Darmstadt, Germany) was used and operated
with an AKTA chromatography system (GE Healthcare/
Merck). Prior to sample application, the column was
washed with two column volumes H,O and equilibrated
with two column volumes SEC-buffer (150 mM NacCl,
50 mM Tris/HCl, pH7.4). The Epacl-camps-Hiss con-
taining eluate obtained from the Ni-NTA matrix was
concentrated to a volume of 1 ml with Amicon® Ultra
Centrifugal Filters (Merck; cut-off 50,000 Da) and ap-
plied to the SEC column. Chromatography was per-
formed with SEC-buffer at a flow rate of 1 ml/min and
fractions of 1ml were collected. Fractions containing
Epacl-camps-Hiss were pooled, concentrated as de-
scribed above, snap frozen in liquid N, and stored at —
80 °C until further use.
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In vitro characterization of Epac1-camps-Hisg

In order to examine the functionality of Epacl-camps-
Hise, purified protein was assessed in 96 multi-well
plates (MWPs; Black Cliniplates, #9502867, Thermo Sci-
entific, Dreieich, Germany) using a plate reader (Fluostar
Omega, BMG Labtech, Ortenberg, Germany). Protein
was diluted to a concentration of 0.7 uM in IS buffer
(135 mM K-gluconate, 12 mM NaHCOj3;, 4 mM KCl, 0.8
mM MgCl,, 10mM HEPES, pH7.4) and 90 pul of the
sample was added to each well of a 96 MWP. The basal
fluorescence emission was determined upon excitation
at 430 nm (10 flashes/well) and recording the emission
at 475nm (ECFP) and at 530 nm (EYFP) over 5 cycles.
The time for measuring the whole MWP (i.e., one cycle)
was 41s. A concentration series of cAMP and ¢cGMP
was added resulting in final concentrations ranging from
10~? to 10"*M. After incubation for 30 min at room
temperature, fluorescence emission was registered and
the EYFP/ECFP ratio (R) was normalized to the ratio of
the basal fluorescence prior to cAMP or cGMP addition
(Rp). R/Ry values were plotted against cyclic nucleotide
concentrations. ECs, values were determined with a
four-parameter nonlinear regression using GraphPad
Prism v5.04 (GraphPad, San Diego, CA, USA). Four- to
eight-fold determinations were performed for each lig-
and concentration and all measurements were repeated
independently at least two to three times. Two prepara-
tions of independently expressed and purified Epacl-
camps-Hisg protein were used.

Cell-based assays inducing cAMP production

We used a cell line previously established in our group
that constitutively expresses an octopamine receptor
from Drosophila melanogaster (DmOCctPIR [2];) to in-
duce cAMP production upon receptor activation by oc-
topamine application. Receptor-encoding cDNA was
stably transfected into human embryonic kidney
(HEK293; purchased from ECACC, no. 85120602) cells
and receptor-expressing cells were selected in the pres-
ence of geneticin. Cells were grown in M10/G418
medium (M10/G418 = MEM + Glutamax™; 10% (v/v)
fetal calf serum; 1% (v/v) antibiotics/antimycotics; 1% (v/
v) non-essential amino acids; 800 pg/ml geneticin (all
from Gibco/Thermo Fisher Scientificc Darmstadt,
Germany)). Cells were propagated in 9 cm petri dishes at
37°C, 5% CO, and ~ 95% relative humidity. For incuba-
tion with different octopamine concentrations (10™° —
10 *M), approx. 250.000 cells per well of 24 MWPs
were used. Incubations were performed at 37 °C for 30
min in the presence of the phosphodiesterase inhibitor
isobutylmethylxanthine (IBMX; final concentration
100 uM) in PBS. Quadruplicate determinations were per-
formed for each ligand concentration and the experi-
ments were independently repeated three times.
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Reactions were stopped by aspirating the test solutions
and adding 0.5 mL of ice-cold ethanol (100%). After 1 h
at 4 °C, lysates was transferred to Eppendorf cups and ly-
ophilized. Samples were reconstituted in double distilled
H,O. To determine the amount of cAMP produced,
Epacl-camps-Hisg protein (0.7 uM) was transferred into
the wells of a 96 MWP. Basal fluorescence emission
(475 nm (ECFP) and 530 nm (EYFP)) was determined
upon excitation at 430 nm over 5 cycles (s.a.) in a plate
reader (Fluostar Omega). Reconstituted probes were
added to the sensor and incubated for 30 min at room
temperature. Then, the EYFP/ECFP emission ratio (R)
for each well was measured and normalized to the emis-
sion ratio of the basal fluorescence (Ry) in each well. A
calibration was performed with known concentrations of
cAMP. Values of cAMP for each well were calculated
from the calibration curve. Data (mean values cAMP (+
SD)) were analyzed and used to generate concentration-
response curves for octopamine with PRISM 5.04
software.
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