
BioMed CentralBMC Biotechnology

ss
Open AcceMethodology article
A kinetic-based sigmoidal model for the polymerase chain reaction 
and its application to high-capacity absolute quantitative real-time 
PCR
Robert G Rutledge* and Don Stewart

Address: Natural Resources Canada, Canadian Forest Service, 1055 du P.E.P.S., Quebec, Quebec G1V 4C7, Canada

Email: Robert G Rutledge* - Bob.Rutledge@NRCan.gc.ca; Don Stewart - Don.Stewart@NRCan.gc.ca

* Corresponding author    

Abstract
Background: Based upon defining a common reference point, current real-time quantitative PCR
technologies compare relative differences in amplification profile position. As such, absolute quantification
requires construction of target-specific standard curves that are highly resource intensive and prone to
introducing quantitative errors. Sigmoidal modeling using nonlinear regression has previously
demonstrated that absolute quantification can be accomplished without standard curves; however,
quantitative errors caused by distortions within the plateau phase have impeded effective implementation
of this alternative approach.

Results: Recognition that amplification rate is linearly correlated to amplicon quantity led to the
derivation of two sigmoid functions that allow target quantification via linear regression analysis. In addition
to circumventing quantitative errors produced by plateau distortions, this approach allows the
amplification efficiency within individual amplification reactions to be determined. Absolute quantification
is accomplished by first converting individual fluorescence readings into target quantity expressed in
fluorescence units, followed by conversion into the number of target molecules via optical calibration.
Founded upon expressing reaction fluorescence in relation to amplicon DNA mass, a seminal element of
this study was to implement optical calibration using lambda gDNA as a universal quantitative standard.
Not only does this eliminate the need to prepare target-specific quantitative standards, it relegates
establishment of quantitative scale to a single, highly defined entity. The quantitative competency of this
approach was assessed by exploiting "limiting dilution assay" for absolute quantification, which provided an
independent gold standard from which to verify quantitative accuracy. This yielded substantive
corroborating evidence that absolute accuracies of ± 25% can be routinely achieved. Comparison with the
LinReg and Miner automated qPCR data processing packages further demonstrated the superior
performance of this kinetic-based methodology.

Conclusion: Called "linear regression of efficiency" or LRE, this novel kinetic approach confers the ability
to conduct high-capacity absolute quantification with unprecedented quality control capabilities. The
computational simplicity and recursive nature of LRE quantification also makes it amenable to software
implementation, as demonstrated by a prototypic Java program that automates data analysis. This in turn
introduces the prospect of conducting absolute quantification with little additional effort beyond that
required for the preparation of the amplification reactions.
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Background
Of the many attributes of real-time quantitative PCR
(qPCR), the ability to conduct absolute quantification is
arguably the most significant. From a technical perspec-
tive, absolute quantification allows assay performance to
be precisely defined, from which sensitivity, effective
quantitative range and quantitative accuracy can be
expressed in absolute terms. From an application perspec-
tive, assessing biological significance within the context of
absolute number of target molecules can enhance the util-
ity of most, if not all, quantitative assays. Many prominent
examples come from biomedical diagnostics where abso-
lute quantification can have direct clinical relevancy, as is
evident for monitoring viral load and residual disease.
Although more general applications such as environmen-
tal screening and pathogen detection would also benefit
greatly, it is the application of absolute qPCR to gene
expression profiling that holds some of the most substan-
tive implications.

Historically, real-time qPCR has largely been relegated to
a supportive role in large-scale gene expression studies,
most frequently used for the verification of DNA microar-
ray datasets [1-3]. Nevertheless, absolute qPCR has the
potential to extend gene expression analysis beyond what
is possible with microarray analysis, based upon the
innate capability to overcome two of the greatest limita-
tions of microarray quantification, which are limited sen-
sitivity and lack of absolute scale [4]. Some of the most
illustrative examples come from the application of micro-
arrays to clinical research and diagnostics. Founded upon
the expectation that gene expression analysis can be used
as a diagnostic tool to both predict and follow therapeutic
outcomes [4,5], many studies have reported that effective
diagnoses can be achieved with relatively small groups of
biomarker transcripts, numbering between 10 and 100
[6,7], a range that is potentially within the capacity of
absolute qPCR technologies.

Development of diagnostic assays for disease prediction
could thus exploit the reduced technical complexity,
speed of analysis, sensitivity and substantively greater res-
olution provided by real-time qPCR, as compared with
microarray analysis [8]. Indeed, absolute quantification
could increase the efficacy of any gene expression profil-
ing initiative, irrespective of the experimental context.
Nevertheless, a prominent inadequacy of current real-
time qPCR technologies is the limited capacity for con-
ducting absolute quantification, due to reliance on target-
specific standard curves [9]. Not only does this necessitate
preparation of a quantified standard for each target under
investigation, the technical difficulties and extensive
resources required for standard curve construction present
considerable challenges for conducting absolute quantifi-
cation, even for a modest number of targets.

A number of studies have attempted to overcome the
innate limitations of standard curves by analyzing the flu-
orescence readings generated by individual amplification
reactions. These include determining amplification effi-
ciency through the application of exponential mathemat-
ics to the log-linear region, using either linear regression
[10-13] or nonlinear regression [14,15]. Attempts to
model the entire amplification profile have included sig-
moidal modeling using nonlinear regression [16-20], in
addition to the application of various biochemical-based
models [21-23], and other forms of mathematical mode-
ling [24-26]. Demonstration that absolute quantification
can be achieved by combining optical calibration with sig-
moidal modeling (a method called "sigmoidal curve fit-
ting" or SCF [18]) has led several groups to evaluate this
approach as an alternative to standard curve-based quan-
tification [27-33]. Unfortunately, effective implementa-
tion of SCF has been impeded by errors produced by
distortions within the plateau phase, which can severely
compromise the accuracy of SCF-based quantification
[18,31-33].

The study presented here extends SCF quantification by
adapting the sigmoid function upon which SCF is based,
to directly model PCR amplification without the need to
conduct nonlinear regression. Based upon a linear rela-
tionship between amplification rate and amplicon quan-
tity, this allows target quantification to be conducted
using linear regression analysis. In addition to eliminating
errors produced by plateau phase anomalies, this pro-
vided the foundation for development of a new quantita-
tive paradigm that does not require standard curves and is
able to resolve quantitative differences on the order of 0.5
fold, while providing unprecedented quality control capa-
bilities. A prototypic Java program which automates
implementation of this kinetic-based methodology fur-
ther illustrates the potential to develop high-throughput
applications, in addition to providing a visual illustration
of the underlying principles.

Results
Amplification efficiency is dynamic and is coupled to 
amplicon DNA quantity
New insights into the dynamics of PCR amplification
have been gained through the application of sigmoidal
modeling [11,18], in which nonlinear regression analysis
is used to fit real-time SYBR Green I fluorescence readings
to the sigmoid function:

where FC is the reaction fluorescence at cycle C and is pro-
portional to the mass of amplicon DNA present in the
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reaction, Fmax is the maximal reaction fluorescence that
defines the end point of the amplification process,
referred to as the plateau phase, C1/2 is the fractional cycle
at which reaction fluorescence reaches half of Fmax, k is
related to the slope of the curve, and Fb is the fluorescence
background. Despite its apparent novelty, this equation is
in fact a simple derivative of the classic Boltzmann four-
parametric sigmoid function that is commonly used to
model sigmoidal datasets.

Notwithstanding the complexities of conducting nonlin-
ear regression analysis, the remarkable precision that can
be achieved is indicative of the potential for sigmoidal
modeling to fundamentally revolutionize real-time qPCR
[18]. An essential insight into this potential comes from
examination of PCR amplification kinetics, as described
by a second sigmoid function [11]:

where EC is the amplification efficiency at cycle C, also
referred to as "cycle efficiency" [18]. Under a sigmoidal
model, amplification rate is maximal at the onset of ther-
mocycling, but progressively decreases such that each

cycle has a unique amplification efficiency, with entry
into the plateau phase occurring as amplification effi-
ciency approaches zero.

The principle of this and other insights can be illustrated
by comparing plots generated with equations 1 and 2, the
most notable being the striking symmetry between ampli-
con DNA accumulation and reduction in cycle efficiency
(Figure 1A). Importantly, this implies that an association
exists between amplicon DNA quantity and amplification
efficiency, a contention supported by the mathematical
prediction of a linear relationship between reaction fluo-
rescence and cycle efficiency (Figure 1B).

Recognition of this linear relationship not only impacts
the practicalities of modeling PCR amplification, but also
has unparalleled implications for how real-time qPCR can
be implemented. Central to this is the prediction that the
dynamics of PCR amplification can be described by a lin-
ear equation, defined here as:

Ec = ΔE × Fc + Emax (3)

where the slope defines the rate of loss in cycle efficiency
(ΔE) and the intercept defines the maximal amplification
efficiency (Emax) when FC = 0 (Figure 1B). It is also evident
that as PCR amplification enters the plateau phase, reac-
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Sigmoidal modeling of PCR amplification reveals symmetry between amplicon accumulation and loss in amplification efficiencyFigure 1
Sigmoidal modeling of PCR amplification reveals symmetry between amplicon accumulation and loss in ampli-
fication efficiency. (A) Plots of the sigmoid functions describing amplicon accumulation (equation 1, solid line) and cycle effi-
ciency (equation 2, dashed line) illustrate a symmetrical relationship, where C1/2 defines the fractional cycle when both reach 
half of their respective maxima. F0 is target quantity expressed in fluorescence units, Emax is the maximal amplification efficiency 
and Fmax is the maximal reaction fluorescence. (B) Plotting cycle efficiency against reaction fluorescence produces a line, pre-
dicting that the progressive loss in cycle efficiency is linearly coupled to amplicon accumulation. This generates a linear repre-
sentation of PCR amplification (referred to as the "LRE plot"), where the Y intercept defines the maximal amplification 
efficiency (Emax) when FC = 0 and the X intercept defines the end-point or plateau phase (Fmax) when EC = 0, with the slope 
defining the rate of loss in cycle efficiency (ΔE) in relation to amplicon DNA quantity as reflected by reaction fluorescence.
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tion fluorescence approaches a maximum (Fmax) as EC
approaches zero, such that equation 3 becomes:

0 = ΔE × Fmax + Emax

so that:

In addition to greatly simplifying the mathematics
describing amplification kinetics, of practical significance
is the ability to obtain estimates of Emax and ΔE via linear
regression analysis, utilizing the fluorescence readings
produced by individual PCR reactions. Termed "linear
regression of efficiency" or LRE, this approach not only
generates a linear representation of PCR amplification,
but as described in later sections, allows target quantity to
be determined directly from individual fluorescence read-
ings. An important qualification, however, is the extent to
which experimental data comply with these mathematical
predictions.

Conformity of real-time amplification profiles generated 
with SYBR Green I
A fundamental approach to analyzing the kinetics of PCR
amplification is based upon defining amplification effi-
ciency as the relative increase in amplicon DNA over a sin-
gle cycle:

where FC-1 is the reaction fluorescence of the preceding
cycle. This provides an estimate of cycle efficiency from
which kinetic analysis can be conducted without having
to resort to nonlinear regression analysis. It should be
noted that Alvarez et al. (2007) [19] have utilized a simi-
lar approach for determining Emax (which they refer to as
the "intrinsic" amplification efficiency), although they
concluded that a two-parametric sigmoid function was
superior to the linear model upon which LRE is based.
Nevertheless, the validity of equation 5 is dependent on
the assumption that reaction fluorescence remains pro-
portional to amplicon DNA quantity throughout the
amplification process. While this may be most evident for
fluorescent dyes such as SYBR Green I, other detection
chemistries may not conform well to this assumption (e.g.
see Swillens et al. (2004) [34]). In fact SYBR Green I detec-
tion may not be free of anomalies, particularly at high
amplicon DNA quantities. This presumption is based
upon the low quantities of SYBR Green I present in com-
mercial real-time PCR formulations (estimated to be 0.1–
0.2X), made necessary by the inhibitory nature of SYBR
Green I. This in turn could distort the apparent cycle effi-

ciency as predicted by equation 5, potentially invalidat-
ing, or at least distorting, LRE-based estimates of Emax and
ΔE.

A major goal of this study was therefore to evaluate the
efficacy of sigmoidal modeling for conducting absolute
quantification, with the explicit objective of validating the
quantitative competency of a LRE-based methodology;
that is, beyond simply generating target quantities that
lack context. Central to this initiative was the utilization of
bacteriophage lambda genomic DNA (lambda gDNA) as
a highly defined, commercially available quantitative
standard. Not only does this approach make much of this
work amenable to experimental replication, it serves to
illustrate some of the exceptional attributes of employing
lambda gDNA as a universal quantitative standard. Para-
mount is the ability to establish quantitative scale, which
is essential to conducting absolute quantification. As will
be illustrated in later sections, this is also requisite to elim-
inating the need for standard curves.

Notwithstanding the potential utility of LRE-based quan-
tification, an essential starting point was to examine the
potential distortion of reaction fluorescence generated by
low quantities of SYBR Green I. It was initially surmised
that increasing SYBR Green I quantity would be informa-
tive; however, the sensitivity of QuantiTect (a T. aquaticus
DNA polymerase (Taq) based formulation) to SYBR
Green I inhibition precluded the ability to apply anything
but a moderate increase in SYBR Green I quantity. Subse-
quently, two alternative non-Taq formulations were eval-
uated, based on the speculation that they could be more
resilient to higher quantities of SYBR Green I. These were
DyNAmo, formulated with an engineered T. brockianus
DNA polymerase fused to a non-specific DNA-binding
region, and FullVelocity, formulated with an unspecified
archaeal DNA polymerase.

As summarized in Figure 2, three series of replicate ampli-
fication reactions supplemented with progressively
greater quantities of SYBR Green I demonstrate, based on
similarity in amplification profile position, that addition
of 1-2X SYBR Green I was marginally inhibitory to both
DyNAmo and FullVelocity. In contrast, QuantiTect was
greatly impacted by addition of 0.8X SYBR Green I, as
reflected by the large shift in position, and extensive scat-
tering, of the replicate amplification profiles (Figure 2A).
More significant, however, is the substantive increase in
Fmax produced by increasing SYBR Green I, establishing
that reaction fluorescence intensity is dependent on SYBR
Green I quantity. Notwithstanding this dependency,
increasing SYBR Green I quantity had no apparent impact
on the general sigmoidal shape of the amplification pro-
files. The amplification profiles produced by DyNAmo
and FullVelocity further indicate that the sigmoidal shape
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Assessing the impact of SYBR Green I quantity on real-time amplification profilesFigure 2
Assessing the impact of SYBR Green I quantity on real-time amplification profiles. Replicate amplification reactions 
were prepared using three commercial enzyme formulations supplemented with increasing amounts of SYBR Green I. Each 
amplification reaction contained 100 femtograms of lambda gDNA (1,876 genomes) and 500 μM of the primers K7B and K12. 
The gain setting for each run was adjusted to ensure that reaction fluorescence remained below the saturation level of the 
photomultiplier tube (about 40,000 FU). (A), (C) and (E) Screen shots of amplification profiles generated by the Stratagene 
MxPro qPCR software. This reveals that fluorescence intensity is dependent on SYBR Green I quantity, reflected by the large 
increase in the height of the amplification profiles as SYBR Green I quantity is increased. (B), (D) and (F) LRE plot of each 
respective amplification profile. This reveals a linear domain corresponding to the central region of each amplification profile, 
confirming the mathematical prediction that amplification efficiency is linearly coupled to amplicon quantity. A consecutive 
group of points was selected (designated by red circles) for linear regression analysis (referred to as "LRE analysis"), generating 
estimates for Emax (intercept) and ΔE (slope), from which Fmax was calculated using equation 4 (see Figure 1 for additional 
details). Details as to how the boundaries of the linear region were determined are described later in the study. [SG]: quantity 
of supplementary SYBR Green I, r2: linear regression correlation coefficient.
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of SYBR Green I amplification profiles is not unique to
Taq.

The sigmoidal character of these amplification profiles
was further substantiated by LRE analysis, which revealed
a linear domain corresponding to the central region of
each amplification profile (Figure 2B, D and 2F). These
plots further reveal that the fluorescence readings gener-
ated by later cycles do not conform well to the LRE model,
as reflected by the "spilling" of points off of the LRE line.
Importantly, this is consistent with what was previously
observed during development of the SCF method, where
anomalies associated with the plateau phase were com-
mon, and significantly distorted nonlinear regression
analyses. This subsequently required exclusion of the pla-
teau cycles from the nonlinear regression, based upon a
somewhat esoteric method for selecting a "cutoff cycle"
[18]. Nevertheless, as is apparent in the LRE plots pre-
sented in Figure 2, a kinetic-based approach provides the
ability to identify anomalous fluorescence readings based
on loss of conformity with the LRE model.

Thus, while testing of the quantitative capabilities of LRE
analysis requires additional tools, this initial assessment
does provide substantive evidence that SYBR Green I real-
time profiles can conform well to that predicted by sig-
moidal modeling. Furthermore, these results suggest that
despite the apparent complexities of the classic Boltz-
mann sigmoid function, it should be possible to develop
a sigmoidal model for the polymerase chain reaction,
derived from the two kinetic parameters predicted by the
LRE model to govern PCR amplification.

Derivation of a kinetic-based sigmoid model for the 
polymerase chain reaction
Conformity of PCR amplification to the classic Boltz-
mann sigmoid function (equation 1) poses the question
as to how C1/2, k and Fmax relate to ΔE and Emax. Although
equation 4 predicts that Fmax is defined by the ratio of Emax
to ΔE, it is less clear how k and C1/2 relate. As summarized
in additional file 1, C1/2 and k can be eliminated through
a series of rearrangements and substitutions, producing
two functions that allow modeling of PCR amplification
based solely on ΔE and Emax. On the assumption that the
fluorescence background (Fb) is zero, these are:

Thus, once values for ΔE and Emax have been obtained via
LRE analysis, equation 6 can be used to convert individual
FC readings into target quantity expressed in fluorescence
units (F0). Target quantification is then based on averag-
ing the F0 values derived from the cycles used in LRE anal-
ysis, followed by conversion into the number of target
molecules via optical calibration. Furthermore, once an
average F0 value has been obtained, the corresponding
amplification profile can be modeled by using equation 7
to calculate predicted FC values for each cycle. As illus-
trated in the next section, this series of computations is
capable of modeling PCR amplification to a very high
degree of precision, and without the need to conduct non-
linear regression analysis.

It should noted that Chervoneva et al. (2007) [20] have
recently described modeling of real-time PCR using a
logistic function identical to equation 7. However, the pri-
mary objective of their study was to determine Emax for rel-
ative quantification, based on nonlinear regression
analysis. This contrasts the kinetic approach taken in this
study, in which absolute quantification is based on con-
verting fluorescence readings into target quantity using
equation 6.

Implementation of LRE quantification
Initial setup
With equations 6 and 7 in hand, the practical and analyt-
ical capabilities of LRE quantification can be tested. Fur-
thermore, the computational simplicity of the
methodology makes it amenable to manual implementa-
tion using a spread sheet. Additional data file 2 contains
the MS Excel templates used for the data analysis con-
ducted in this study. The general approach involves a
series of steps that culminates in a recursive process in
which the conformity of individual fluorescence readings
is used to optimize the analysis.

Fluorescence readings are first imported into the spread-
sheet and background fluorescence subtracted, as esti-
mated by averaging 6–12 baseline cycles (i.e. before
amplicon DNA becomes detectable). Replicate FC datasets
are then averaged (see below), cycle efficiency (EC) calcu-
lated for each cycle using equation 5, and EC plotted
against FC to generate what is called the "LRE plot" (Figure
2B, D and 2F). A contiguous group of points is then
selected for linear regression analysis, from which esti-
mates of ΔE (slope) and Emax (intercept) are obtained, a
process called "LRE analysis". Referred to as the "LRE win-
dow", this region is elemental to defining the sigmoidal
model of an amplification profile. The linear integrity of
the LRE window is thus crucial to the quantitative accu-
racy of the assay.
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Various methods for selecting the LRE window size and
position have been tested. In practice, details of LRE win-
dow selection for many amplicons are somewhat inconse-
quential, due to the high degree of conformity that can be
generated. Nevertheless, as noted earlier, later cycles of
some amplification profiles do not conform well to sig-
moidal modeling. This is apparent in Figure 2B, D and 2F
in which points corresponding to cycles within the upper
region of each amplification profile "drift" off the LRE
line. A key objective is therefore to avoid inclusion of
these non-conforming cycles into the LRE window, while
at the same time selecting the largest possible LRE window
in order to maximize the precision of the linear regression
analysis.

A logical starting point is to initially select a small LRE
window positioned within the lower region of an amplifi-
cation profile, and to progressively add consecutive cycles
to the LRE window (i.e. to expand the upper limit of the
LRE window), repeating the linear regression analysis as
each new cycle is added to the LRE window. This is con-
tinued until encountering a cycle that clearly does not
conform, based upon divergence from the LRE line.
Although this approach can be reasonably effective, a
more objective method that has proven to be both simpler
and more sensitive becomes evident during assessment of
LRE quantitative precision. However, before this can be
described, another foundational principle of LRE quanti-
fication must first be implemented.

Target quantification, recursive analysis and the precision of LRE 
modeling
A fundamental attribute of LRE quantification, as exem-
plified by equation 6, is the ability to convert individual
FC readings into a target quantity, once estimates for ΔE
and Emax have been obtained. Indeed, several intriguing
behaviors become evident when this is applied across an
entire amplification profile, generating what is referred to
as the "F0 plot". The most notable is that F0 values encom-
passed by the LRE window are very similar, a trend that
can extend to FC readings close to the baseline fluores-
cence (Figure 3). In addition to providing multiple esti-
mates of target quantity from each amplification profile,
this illustrates the extraordinary precision that LRE mode-
ling can achieve. Typically, high-quality fluorescence data-
sets generate a coefficient of variance (CV) for F0 of < ±
1.0% over a 4–6 cycle LRE window (Figure 3).

A second attribute of F0 plots is characterized by a rapid
divergence of F0 values derived from later cycles within
many amplification profiles. As would be anticipated, this
coincides precisely with the loss in conformity to the LRE
line generated in the corresponding LRE plot. Although
the examples presented in Figure 3 produced a sweeping
upward arc, downward arcing have also been commonly

observed. In either case, the abruptness of this divergence
provides a dependable marker for loss of conformity,
which in turn allows the upper limit of the LRE window
to be objectively defined.

Based upon the general principle of conformity, the utility
of using recursive analysis to optimize the LRE window
size was explored, primarily to develop an algorithm for
automating LRE data analysis. The approach starts by
defining a small LRE window in the lower region of a pro-
file. Although software implementation can provide sev-
eral methods for determining the lower boundary of the
LRE window, manual implementation was based upon
empirical determination of the lowest FC reading that gen-
erates sufficient precision to produce a reliable EC value
for the first cycle of the LRE window (referred to as the LRE
window "start cycle"). Linear regression analysis is con-
ducted on this preliminary LRE window, and the FC read-
ings across the entire profile converted to F0 (equation 6).
An average F0 value is then calculated from the FC readings
encompassed by the LRE window. It should be noted that
this includes the FC generated in the cycle immediately
preceding the start cycle, due to the fact that this FC read-
ing is the denominator used to calculate EC for the start
cycle.

The recursive nature of this approach derives from com-
paring the average F0 produced by the LRE window, to that
generated by the cycle immediately following the last
cycle of the LRE window. The difference, expressed as a
percentage of the average F0, is then used to assess the
level of conformity. A threshold value (7.5% difference in
this study) is then used to determine whether this cycle
should be subsumed into the LRE window. If so, the LRE
window is expanded to include this next cycle, and the
LRE analysis is repeated. This recursive process is contin-
ued until a cycle is encountered that produces a F0 differ-
ence larger than the threshold. An example of this
recursive approach is presented in Figure 4, which pro-
vides a more detailed illustration of the process. Worthy
of note are the relatively small differences (typically < 0.5
fold) in the average F0 produced by expanding the LRE
window to include cycles that are clearly nonconforming,
as is illustrated in Figure 4. Even though a more formal
documentation of the robustness of LRE analysis will not
be attempted here, the prototypic Java program intro-
duced at the end of the study provides the ability to
quickly assess the impact of LRE window size and posi-
tion.

F0 plots thus illustrate the two key attributes that underpin
the quantitative capability of the LRE method. The first is
the ability to objectively define the LRE window based on
conformity of the derived F0 values. The second is estimat-
ing target quantity based upon averaging F0 values encom-
Page 7 of 28
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F0 plots for the amplification profiles presented in Figure 2Figure 3
F0 plots for the amplification profiles presented in Figure 2. Following LRE analysis, individual fluorescence readings 
were converted into target quantity using equation 6 and the resulting values plotted back against the fluorescence readings. 
Numerical summaries of the F0 values encompassed by the LRE window (designated by red circles) are provided as inlays. The 
high level of similarity of F0 values within the LRE window is reflected by their respective CV values that range from +/-0.04% 
to +/-2.19%, illustrating the remarkable level of precision that can be achieved with LRE-based sigmoidal modeling. These plots 
also illustrate the rapid divergence in the F0 value generated by cycles within the upper region of these amplification profiles, 
due to loss of conformity with the LRE model.
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Optimizing LRE window size via recursionFigure 4
Optimizing LRE window size via recursion. This data is taken from the 0.5X SYBR Green I DyNAmo amplification profile 
(Figure 2); however, all the amplification profiles in Figure 2 generate similar results. The recursive analysis starts by assigning a 
small LRE window (designated by red circles) in the lower region of the amplification profile and conducting linear regression 
analysis using the points within this preliminary LRE window (blue highlight). FC readings are then converted to F0 using equa-
tion 6 and the average determined for F0 values encompassed by the LRE window (green highlight). Conformity of the F0 value 
generated by the cycle immediate following the last cycle of the LRE window is then assessed (bold), based upon the percent 
difference with the LRE window F0 average (%Diff, yellow highlight). If this difference is less than a specified threshold, the LRE 
window is expanded to include the next cycle and the analysis repeated. This recursive process is continued until a noncon-
forming cycle is encountered as defined by the threshold. Note that for illustrative purposes, the LRE window in this figure has 
been expanded beyond the threshold used in this study (7.5%). Although the LRE line generated within the LRE plot can be 
used to assess conformity, examining the resulting F0 values provides a more sensitive and objective methodology, as is visually 
illustrated by the F0 plots.
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passed by the LRE window (typically 4–6 cycles).
Furthermore, the CV of the LRE window F0 values is an
effective indicator of the general quality of the fluores-
cence dataset (Figure 3), which is a major determinant of
the general efficacy of LRE-based quantification (see
below). Another indicator of the precision that can be
achieved with LRE modeling is the correlation between
actual FC readings and that predicted by equation 7. The
profiles presented in Figure 5 exemplify high-quality data-
sets, which can generate predicted FC values that differ on
average < 0.5% of the actual FC readings within the LRE
window.

Maximizing optical precision
Notwithstanding the high degree of precision that can be
achieved, it became evident during the early stages of LRE
implementation that a number of optical factors can com-
promise, sometimes severely, the quality of a fluorescence
dataset. Before addressing further the quantitative capa-
bility of LRE analysis, the role of reaction fluorescence
determination and assay optics should first be considered.
As might be anticipated, optical precision is a central
determinant of the quantitative accuracy and reliability
that can be achieved with LRE quantification. Two simple
steps can be taken to increase optical precision. The first is
to take multiple fluorescence readings at the end of each
cycle (three in this study) and to use the average for deter-
mining reaction fluorescence. This reduces the error-of-
measurement produced by the instrument's optical sys-
tem. The second is to conduct technical replicates for each
sample (four replicates in this study) and to construct a
single FC dataset by averaging the fluorescence readings
generated by the replicates.

Although conducting LRE analysis on each individual rep-
licate amplification profile and averaging the resulting ΔE,
Emax and F0 values generally produces comparable results,
averaging FC readings from replicate reactions prior to LRE
analysis can increase FC precision substantially, particu-
larly for FC datasets of marginal quality. An exception is
for samples containing < 10 target molecules, due to the
fact that Poisson distribution generates extensive scatter-
ing of the replicate amplification profiles, such that FC
averaging becomes less effective.

Another key aspect is to monitor run-to-run optical vari-
ances by including a quantitative standard within each
run. As described in the next section, lambda gDNA has
proven to be a reliable quantitative standard that allows
monitoring of the many factors impacting assay optics,
through the ability to express the fluorescence intensity of
an assay in quantitative terms. This introduces the concept
of calibrating the optical component of real-time qPCR,
which is the last foundational principle of LRE quantifica-
tion.

Derivation of absolute scale
One of the principal attributes of employing a universal
quantitative standard in combination with SYBR Green I
detection is the ability to calibrate fluorescence intensity
by expressing assay fluorescence in terms of amplicon
mass. Referred to as "optical calibration", this can be
accomplished by amplifying a known quantity of a stand-
ard and dividing the resulting F0 value by the predicted
target quantity, expressed as nanograms of amplicon DNA
(M0). For lambda gDNA, this takes the form:

where ngLambda is the mass of lambda gDNA in nano-
grams, AS is the amplicon size and 48,502 is the genome
size of lambda (both expressed in base pairs) so that:

where OCF is defined as the "optical calibration factor",
expressed in this study as fluorescence units per nanogram
of double-stranded DNA (FU/ng dsDNA). The ability to
express fluorescence intensity in quantitative terms pro-
vides a simple, centralized quality control component
that incorporates all of the many factors impacting the
optics of an assay. These include factors related to reaction
setup, such as batch-to-batch variations in enzyme formu-
lation, reaction vessels and closures, in addition to the
performance of the optical system.

An illustration of this approach is presented in Figure 6,
which summarizes optical calibrations conducted with
five reaction formulations supplemented with various
quantities of SYBR Green I. Derived from the analyses of
32 individual amplification runs, this large dataset pro-
vides a general indication of the variances generated by
each LRE parameter, culminating in an OCF average CV of
± 21.3% across all five reaction formulations. All things
being equal, this should be indicative of the resolution
that a LRE-based quantitative assay can achieve. Indeed,
similar variances were generated by repeated quantifica-
tions of eleven mRNA targets, as described in the next sec-
tion. Of greater significance, however, is the ability to use
optical calibration to establish an absolute quantitative
scale.

The concept of optical calibration was first introduced
within the context of standard curve-based quantification,
in which it was recognized that correlating reaction fluo-
rescence to DNA mass could provide a simplified method
for establishing quantitative scale [9]. Optical calibration
in a form similar to that presented here was subsequently
described within the context of absolute quantification

M
ngLambda AS

0 48 502
= ×

,
(8)

OCF
F
M

= 0
0

(9)
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Comparison of actual reaction fluorescence readings to those predicted by LRE modelingFigure 5
Comparison of actual reaction fluorescence readings to those predicted by LRE modeling. Although the 
DyNAmo series was selected for presentation, all three series presented in Figure 2 produced similar results. The average F0 
calculated from the LRE window (designated by red circles, see Figure 3) was used to calculate the predicted FC across the 
entire amplification profile using equation 7 (circles) and plotted with the actual FC readings (dots). The numerical summaries 
presented as inlays illustrate the high degree of precision that can be achieved, with the average percent difference of < 0.5% 
for FC readings within the LRE window. FC: actual reaction fluorescence, pFC: predicted reaction fluorescence, Diff: difference 
between actual and predicted FC, %pFC: difference expressed as a percentage of the predicted FC.
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using nonlinear regression (SCF) [18]. In either case, it
was evident that the ease of conducting absolute qPCR
would be greatly increased by implementing optical cali-
bration using a universal quantitative standard. In addi-
tion to eliminating the need to prepare target-specific
standards, when combined with LRE analysis optical cali-
bration circumvents the need to construct standard
curves.

Under this approach, absolute quantification is achieved
by first converting the derived F0 value into DNA mass
using a lambda-based optical calibration factor (equa-
tions 8 and 9):

for double-stranded DNA targets, or:

for single-stranded DNA targets, where M0 is target mass
expressed as nanograms of amplicon DNA. Conversion
into the number of target molecules then simply requires
relating M0 to the molecular size of the amplicon:

were N0 is the number of target molecules, AS is amplicon
size in base pairs, and 9.1 × 1011 is the number of base
pairs per nanogram of dsDNA [18]. In view of the opera-
tional simplicity provided by this approach, few addi-
tional requirements would be necessary to fully automate
absolute quantification. However, one important caveat
remains to be addressed, which is the implicit assumption
that all amplicons generate similar fluorescent intensities.

Application to gene expression profiling
Key to utilizing a single absolute scale across multiple tar-
gets is the underlying assumption that amplicon-specific
factors such as amplicon size and/or base pair composi-
tion, do not significantly impact the intensity of SYBR
Green I fluorescence (i.e. FU/bp). One approach to testing
this assumption would be to compare quantifications
generated by a large number of diverse amplicons targeted
to a quantified standard (such as lambda gDNA), with the
expectation that differences in optical intensity would
generate quantitative biases. Although such an analytic
approach can be effective, the approach chosen for this
study was based upon applying LRE quantification to
gene expression analysis. An in-house initiative to develop
large-scale expression profiling in Arabidopsis thaliana pro-
vided a large database from which to select candidate tar-

M
F

OCF0 = 0 (10)

M
F

OCF0 =
×( )
0

0 5.
(11)

N
M

AS
0 = × ×0 9 1 1011. (12)

Optical calibrations of five reaction formulations supple-mented with various quantities of SYBR Green IFigure 6
Optical calibrations of five reaction formulations sup-
plemented with various quantities of SYBR Green I. 
Spreadsheet summary of the lambda gDNA (primer pair 
K7B-K12) optical calibrations conducted for the five reaction 
formulations used for LRE quantification in this study. Based 
on data presented in Figure 2, these formulations were 
designed to assess the impact of SYBR Green I quantity, the 
highest supplemented quantity (2.0X) estimated to be > 10X 
than that present in these three commercial formulations. 
Each row of values was derived from an individual amplifica-
tion run (see additional file 3 for more details). (A) Quanti-
Tect 0X SYBR Green I. (B) QuantiTect 0.2X SYBR Green I. 
(C) DyNAmo 0.5X SYBR Green I. (D) DyNAmo 1.5X SYBR 
Green I. (E) FullVelocity 2.0X SYBR Green I. Lam: lambda 
gDNA quantity in femtograms, QT: QuantiTect, DyNa: 
DyNAmo; FV: FullVelocity, SG: SYBR Green I, SD: standard 
deviation, CV: coefficient of variation (SD/Average × 100%).
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LRE analysis of eleven cDNA targets amplified with five reaction formulationsFigure 7
LRE analysis of eleven cDNA targets amplified with five reaction formulations. Summaries for LRE analysis of a 
total of 134 amplification profiles (each profile an average of four replicate amplification reactions) generated from eleven 
cDNA targets quantified using five reaction formulations (see Figure 2 and additional file 3 for additional details). (A) Average 
linear regression correlation coefficients (r2). (B) Average Emax. (C) Average ΔE. Note that ΔE is dependent on the optics of 
the assay and are thus not directly comparable across different formulations and gain settings. (D) Average F0 derived from the 
average of F0 values encompassed by the LRE window (see Figure 4 for details). QT: QuantiTect, DyNa: DyNAmo; FV: Full-
Velocity, SG: SYBR Green I, SD: standard deviation, n: the number of runs, na: not applicable (only one run conducted), nd: 
not determined.
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gets for absolute quantification. Eleven transcripts were
selected based primarily on encompassing a quantitative
range indicative of transcriptional factors, which for this
group of targets was estimated to be 10–10,000 transcript
molecules per 10 ng of total RNA. Furthermore, these tar-
gets encompass amplicon sizes of 85–150 bp and ampli-
con GC contents ranging from 40–53% (see Methods for
further details), from which it was expected that any sub-
stantive differences in amplicon fluorescence would gen-
erate recognizable quantitative biases.

The most notable initial outcome was that all amplicons
generated amplification profiles that conformed well to
the LRE model, as reflected by an average LRE linear
regression correlation coefficient (r2) of > 0.995 (Figure
7A, additional file 3). Indeed, of the > 400 primer pairs
tested to date, all have conformed well to LRE modeling.
Unexpectedly, increasing SYBR Green I quantity had little
or no impact on the r2 of the LRE analysis, despite a greater
than X10 increase in Fmax at the highest SYBR Green I
quantity examined (Figure 7A). Increasing SYBR Green I
quantity also did not reduce the quantitative variance of
the derived F0 values (see below).

This high level of precision is further reflected by the low
variances generated by the corresponding Emax and ΔE
determinations (Figure 7B and 7C). Worthy of note is the
standard deviation of Emax determination, which averaged
± 1.4% across all targets and reaction formulations. In
addition to demonstrating the robust nature of LRE anal-
ysis, such low variances support the contention that PCR
amplification is an inherently precise process. Further-

more, without delving into the mathematics of the LRE
model, it should be noted that Emax has by far the greatest
impact on target quantification (a 1% difference in Emax
roughly produces a 20–30% difference in the calculated
target quantity), such that Emax estimation is the primary
determinant of the quantitative resolution that can be
achieved. Based upon the low variances in Emax and ΔE
determinations, it is not surprising that the derived F0 val-
ues for each target generated an overall average CV of ±
21.2% (Figure 7D). As noted earlier, this is very similar to
the average OCF CV of ± 21.3%, indicating that LRE has
the potential to resolve quantitative differences of < ±
25%. Quantitative resolution also appears not to be
impacted by increasing SYBR Green I quantity, with each
of the five reaction formulations producing similar F0 CVs
(Figure 7D).

This dataset also illustrates the limitations of expressing
target quantities in units dependent on assay setup and
instrument optics. In this case, it is not possible to directly
compare F0 values across different enzyme formulations,
due to differences in reaction intensity and gain settings.
However, converting F0 quantities into the number of tar-
get molecules provides an absolute context that allows
comparison of target quantities generated under disparate
assay conditions. Although this may seem obvious, it is
worth stressing that provision of a universal context is
what makes absolute quantification so compelling, in that
absolute values transcend issues of assay design, instru-
mentation, and even the type of data analysis applied.
Table 1 provides an illustrative example, which demon-
strates that SYBR Green I quantity and enzyme type had a

Table 1: LRE-based absolute quantification of eleven cDNA targets using five enzyme formulations.

Gain: X8 X8 X2 X2 X1
OCF: 1092 1155 704 778 345
Enzyme: QT 0XSG QT 0.2XSG DyNa 0.5XSG DyNa 1.5XSG FV 2.0XSG LRE-No Average CV (+/-)
Target

CHS K3K4 6,143 7,323 5,658 8,500 11,598 7,844 30.2%
SE K3K2 4,828 5,444 5,103 6,363 nd 5,435 12.3%
PHB K3K2 2,951 3,292 2,646 3,733 2,956 3,116 13.3%
EMF2 K2K3 2,301 3,256 3,094 2,752 nd 2,851 14.8%
NPR1 K1K4 1,872 1,973 1,565 1,657 2,334 1,880 16.0%
ANT K3K4 970 1,390 756 1,139 1,446 1,140 25.3%
FLF K3K4 661 553 466 596 nd 569 14.4%
HAP3C K3K4 145 198 254 255 nd 213 24.7%
ABI3 K3K4 66 105 129 122 48 94 37.8%
AP3 K3K4 38 52 61 34 22 41 37.3%
Lec2 K3K4 6 14 12 12 9 11 31.4%

Av. CV: 23.4%

Following LRE analysis (summarized in Figure 7), the FC readings encompassed by the LRE window were converted to F0 (see Figure 3) and the 
average F0 value converted to the number of target molecules (LRE-N0) using the OCF generated by each respective reaction formulation (see 
Figure 6 and additional file 3 for more details). The gain setting was adjusted to prevent saturation of the photomultiplier (see Figure 2). Gain: the 
photomultiplier gain setting, OCF: optical calibration factor (FU/ng dsDNA), QT: QuantiTect, DyNa: DyNAmo; FV: FullVelocity, SG: SYBR Green I, 
SD: standard deviation, nd: not determined.
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modest, if any, impact on LRE quantification. Further-
more, the average CV of ± 23.4% produced across all five
reaction formulations is in general agreement with the
contention that LRE quantification is able to resolve
quantitative differences smaller than ± 25%.

Notwithstanding the high level of precision that can be
achieved, it is important to note that despite expressing
quantities as the number of target molecules, the quanti-
tative context is still confined to the LRE analyses used to
generate the dataset. That is, this type of comparison is
unable to verify absolute accuracy, in that any biases gen-
erated by LRE analysis and/or optical calibration will gen-
erate quantitative biases. As is presented in the following
two sections, the quantitative context can be expanded by
determining how closely target quantities produced by
other methods correlate with the LRE-derived quantities.

Absolute quantification via Ct
Positional analysis, as exemplified by the threshold
method, has predominated since the introduction of real-
time PCR over 15 years ago [35], and is the quantitative
methodology upon which all commercial platforms cur-
rently rely. Based upon the fractional cycle at which reac-
tion fluorescence reaches a threshold value, the threshold
method defines profile position through a common refer-
ence point called the threshold cycle or "Ct". Absolute
quantification is accomplished via standard curves con-
structed with target-specific quantified standards [9],
which are technically challenging and prone to generating
quantitative errors. However, previous recognition that a
sigmoidal-derived Emax is analogous to a slope-derived
amplification efficiency generated from a standard curve
[18] suggests an alternative method for converting Ct val-
ues into target molecules, using the exponential equation:

were Ft is the fluorescence threshold used to derive Ct, and
Emax is the amplification efficiency derived from LRE anal-
ysis. Importantly, this approach allows the application of
optical calibration so that Ct-based absolute quantifica-
tion can be conducted without standard curves.

Table 2 summarizes the target quantities produced by this
approach using the Ct values generated from the amplifi-
cations summarized in Figure 7 (see additional file 3 for
more details). Similar levels of quantitative variance were
seen across all five reaction formulations as compared
with those produced by LRE quantification (Table 1). Not
only does this confirm the high level of quantitative pre-
cision that can be achieved with real-time qPCR, it pro-
vides the opportunity to further extend the quantitative
context by comparing Ct- and LRE-based quantifications.

Figure 8 presents Log2 plots and numerical summaries
comparing LRE and Ct derived quantities of the eleven
cDNA targets, for each of the five reaction formulations.
The high level of correlation reflected by an average r2 of >
0.995 provides strong corroborating evidence for the pre-
cision of LRE quantification. An important qualification,
however, is that Ct quantification conducted in this fash-
ion is dependent upon both Emax and OCF. As such, any
quantitative biases generated by LRE analysis will impact
the absolute accuracy of both LRE- and Ct-based quantifi-
cations. It should be noted that standard curves are also
susceptible to introducing quantitative biases, produced
for example, by errors in quantification of the standard
and/or preparation of the dilution series. Importantly,

F
Ft

E Ct
0

1
=

+( max )
(13)

Table 2: Absolute quantification based upon conversion of Ct to F0 via E max and Ft.

Gain: X8 X8 X2 X2 X1
OCF: 1092 1155 704 778 345
Enzyme: QT 0XSG QT 0.2XSG DyNa 0.5XSG DyNa 1.5XSG FV 2.0XSG LRE-No Average CV (+/-)
Target

CHS K3K4 5,876 7,562 5,564 9,188 10,813 7,801 28.5%
SE K2K3 4,874 5,919 5,255 7,485 nd 5,883 19.6%
PHB K3K2 2,653 3,405 2,730 3,916 2,888 3,119 17.1%
EMF2 K2K3 2,256 3,271 2,960 2,821 nd 2,827 15.0%
NPR1 K1K4 2,039 2,070 1,634 1,892 2,369 2,001 13.4%
ANT K3K4 923 1,288 972 1,342 1,450 1,195 19.6%
FLF K3K4 442 651 489 665 nd 562 20.1%
HAP3C K3K4 148 195 255 285 nd 221 27.7%
ABI3 K3K4 65 108 139 139 46 100 42.6%
AP3 K3K4 32 54 40 39 26 38 27.6%
Lec2 K3K4 3 14 11 11 8 10 41.7%

Av. CV: 24.8%

Ct values generated by the amplification profiles summarized in Figure 7 were converted to F0 using equation 6, and then converted to target 
molecule number via the OCF as used for LRE quantification (see text and additional data file 3 for additional details).
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Comparison of LRE- and Ct-based quantificationsFigure 8
Comparison of LRE- and Ct-based quantifications. (A) Log2 plot of Ct vs. LRE quantifications using five reaction formu-
lations summarized in Figure 7. (B) Numerical summary. R2: linear correlation coefficient, %Diff: difference expressed as a 
percentage of LRE-No.
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QT 0XSG
Target LRE-No Ct-No %Diff

CHS K3K4 6,143 5,876 -4.3%
SE K2K3 4,828 4,874 0.9%
PHB K3K2 2,951 2,653 -10.1%
EMF2 K2K3 2,301 2,256 -2.0%
NPR1 K1K4 1,872 2,039 8.9%
ANT K3K4 970 923 -4.8%
FLF K3K4 661 442 -33.1%
HAP3C K3K4 145 148 2.0%
ABI3 K3K4 66 65 -0.5%
AP3 K3K4 38 32 -15.6%
Lec2 K3K4 6 3 -38.2%

Average Difference: 11.0%

QT 0.2XSG
Target LRE-No Ct-No %Diff

CHS K3K4 7,323 7,562 3.3%
SE K2K3 5,444 5,919 8.7%
PHB K3K2 3,292 3,405 3.4%
EMF2 K2K3 3,256 3,271 0.4%
NPR1 K1K4 1,973 2,070 4.9%
ANT K3K4 1,390 1,288 -7.4%
FLF K3K4 553 651 17.6%
HAP3C K3K4 198 195 -1.4%
ABI3 K3K4 105 108 3.2%
AP3 K3K4 52 54 3.5%
Lec2 K3K4 14 14 1.1%

Average Difference: 5.0%

DyNa 0.5XSG
Target LRE-No Ct-No %Diff

CHS K3K4 5,658 5,564 -1.7%
SE K2K3 5,103 5,255 3.0%
PHB K3K2 2,646 2,730 3.2%
EMF2 K2K3 3,094 2,960 -4.3%
NPR1 K1K4 1,565 1,634 4.4%
ANT K3K4 756 972 28.6%
FLF K3K4 466 489 4.9%
HAP3C K3K4 254 255 0.7%
ABI3 K3K4 129 139 7.5%
AP3 K3K4 61 40 -35.1%
Lec2 K3K4 12 11 -8.8%

Average Difference: 9.3%

DyNa 1.5XSG
Target LRE-No Ct-No %Diff

CHS K3K4 8,500 9,188 8.1%
SE K2K3 6,363 7,485 17.6%
PHB K3K2 3,733 3,916 4.9%
EMF2 K2K3 2,752 2,821 2.5%
NPR1 K1K4 1,657 1,892 14.2%
ANT K3K4 1,139 1,342 17.9%
FLF K3K4 596 665 11.5%
HAP3C K3K4 255 285 11.6%
ABI3 K3K4 122 139 14.2%
AP3 K3K4 34 39 15.4%
Lec2 K3K4 12 11 -8.4%

Average Difference: 11.5%

FV 2.0XSG
Target LRE-No Ct-No %Diff

CHS K3K4 11,598 10,813 -6.8%
SE K2K3
PHB K3K2 2,956 2,888 -2.3%
EMF2 K2K3
NPR1 K1K4 2,334 2,369 1.5%
ANT K3K4 1,446 1,450 0.3%
FLF K3K4
HAP3C K3K4
ABI3 K3K4 48 46 -3.6%
AP3 K3K4 22 26 18.8%
Lec2 K3K4 9 8 -7.8%

Average Difference: 5.9%
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this highlights the dilemma associated with any real-time
qPCR assay, irrespective of how it is implemented; that is,
how to effectively assess the true quantitative accuracy,
referred to in this study as "absolute accuracy".

Accuracy is typically determined by repeatedly measuring
some traceable reference standard. While this approach
could be effective for well-characterized targets, the use of
reference standards is impractical for applications involv-
ing large numbers of diverse targets. What would be more
effective is an alternative quantitative method that would,
as much as possible, be free from potential biases gener-
ated by real-time qPCR. A superbly effective solution has
been provided by Wang and Spadoro [36], which exploits
the single-molecule sensitivity inherent to PCR amplifica-
tion. Founded upon the principles of Poisson distribu-
tion, this approach provides an elegant means for
absolute quantification that would be familiar to any
microbiologist or virologist; that is, the method of "limit-
ing dilution assay".

Absolute quantification via limiting dilution assay (LDA)
The efficacy of LDA derives from its ability to achieve
absolute quantification independent of the kinetic and
optical principles upon which real-time qPCR is depend-
ent, and does not require a quantitative standard. LDA
relies solely on the frequency of reactions that fail to pro-
duce an amplification product, utilizing PCR to only
determine whether a target molecule is present within an
individual aliquot. Furthermore, the assay is not depend-
ent on how the PCR amplification is actually conducted,
requiring only that it generate single-molecule sensitivity,
and that amplification reactions that generate false posi-
tives (e.g. primer dimers) are either absent or can be iden-
tified. Thus, an economical SYBR Green I-based LDA
could, for example, be used to evaluate the quantitative
accuracy of a probe-based assay.

As the name implies, LDA involves diluting the sample to
a limit, which in this case are individual target molecules.
As dictated by Poisson distribution, when a sample is
diluted to a point near to one target molecule per aliquot,
a high proportion of aliquots will not contain a target
molecule. It is the frequency of these "nil" aliquots that
allow the average target quantity to be calculated using the
equation:

Average target molecules per aliquot = -Ln(Nil/Total)
(14)

where Nil and Total are the number of reactions that fail
to produce amplicon DNA and the total number of reac-
tions conducted, respectively [36]. Target quantity is then
calculated based on the dilution factor used to reach sin-
gle a molecule concentration. It is important to note that

LDA is self-validating, such that if the sample is under-
diluted no nil reactions will be produced, whereas if the
sample is over-diluted all reactions will be nil. As a result
of this intrinsic self-validation, LDA has in practice proven
to be exceptionally reliable.

Table 3 summarizes results from LDAs conducted on all
eleven mRNA targets, for which the dilution factor
applied was based upon the LRE quantification for each
respective target. Comparing the LDA quantifications to
the LRE quantifications via Log2 plots, four of the five
reaction formulations generated an r2 > 0.99, with the Ful-
lVelocity formulation generating an r2 of 0.97 (Figure 9).
Excluding the FullVelocity dataset, this translates to an
absolute difference of < ± 20% on average. Overall, this
dataset not only illustrates the level of absolute accuracies
that can be achieved with LRE quantification, but also
indicates that any quantitative biases generated by differ-
ences in amplicon fluorescence intensity are most likely to
be small.

Recognized anomalies impacting LRE quantification
During the development and testing of LRE quantifica-
tion, a number of factors were identified that either com-
promise or prohibit effective application of LRE
quantification. Referred to here as "anomalies", these
actually encompass a broad variety of factors, ranging
from primer pair performance to optical precision and
data processing of fluorescence readings.

Table 3: Absolute quantification via limiting dilution assay.

Dilution Total Nil N per
Target Factor Rxns Rxns Aliquot LDA-No

CHS 15,000 48 30 0.47 7,050
SE 6,222 48 22 0.78 4,854

PHB 6,222 48 28 0.54 3,354
EMF2 8,000 48 33 0.37 2,998
NPR1 3,000 48 26 0.61 1,839
ANT 1,250 48 20 0.88 1,094
FLF 500 24 9 0.98 490

HAP3C 466 48 29 0.50 235
ABI3 250 48 28 0.54 135
AP3 67 48 19 0.93 62
Lec2 20 48 27 0.58 12

Based upon the N0 values produced by LRE quantification, a sample of 
each reverse transcriptase reaction was diluted to a predicted 0.5–1.0 
target molecules per aliquot for each of the eleven cDNA targets, and 
replicate amplification reactions were conducted to determine the 
frequency of aliquots lacking a target molecule (Nil Rxns). The 
number of target molecules (N) per aliquot was then calculated using 
equation 14 and the predicted number of target molecules in the 
reverse transcriptase reaction (LDA-No) was calculated by 
multiplying by the dilution factor (see text for additional details).
Page 17 of 28
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Compromised efficiency of target priming and elongation
A fundamental principle impacting the quantitative accu-
racy of real-time qPCR is simple in principle, but not nec-
essarily apparent; that is, disrupting target priming and
elongation. Best exemplified by single nucleotide poly-
morphisms (SNPs), base-pair mismatches between a
primer and the target can severely disrupt initiation of
PCR amplification, but once an amplicon molecule is
formed these mismatches are lost, such that amplicon
amplification proceeds unhindered. LRE analysis of the
resulting amplification profile is thus incapable of detect-
ing target priming anomalies. Indeed, any factor that dis-
rupts the efficiency of target priming and elongation that
does not equally reduce the efficiency of amplicon prim-
ing and elongation, will necessarily generate an under-
estimation of target quantity.

Such a situation can be prevalent for species or genotypes
where SNP occurrence is undocumented. A simple but
effective solution is to compare quantifications generated
by multiple amplicons per target (see Methods for addi-
tional details). Disruption of target priming and elonga-
tion then becomes evident as a shift to later cycles, of the
profile generated by the impacted primer(s). Although
not yet formally documented, preliminary work has also
indicated that certain PCR inhibitors can also selectively
disrupt target priming and elongation, an issue that is fun-
damentally more difficult to address.

Compromised optical integrity
Factors impacting assay optics can severely compromise
LRE quantification. A simple example encountered during
an early set of experiments, was a problem eventually
traced back to optical variance in the reaction tubes,
which produced up to a 40% difference in fluorescence
intensity between identical amplification reactions (data
not shown). As described earlier, monitoring assay optics
via amplification of quantitative standard such as lambda
gDNA, has proven effective for identifying such optical
anomalies via differences in the resulting OCF values.

The initial processing of fluorescence datasets is another
factor that can impact optical precision. It is paramount to
ensure that beyond fluorescence background subtraction,
no additional modifications are performed on the FC data-
sets. The most commonly encountered data manipulation
is often referred to as "curve smoothing" in which a run-
ning average is applied in order to generate more aesthet-
ically pleasing amplification profiles. Even though the
apparent sigmoidal character of the resulting profiles can
be improved (i.e. increased linearity of the LRE plot), such
modifications significantly distort LRE analysis, the most
evident being a large reduction in Emax. Some forms of
optical normalization could also be expected to be prob-
lematic, although this has not been formally investigated.

As a general rule, it is recommended that as few modifica-
tions as possible be conducted on FC datasets, even to the
point of conducting background subtraction manually in
order to ensure an accurate baseline estimate, as was nec-
essary in this study (see Methods for additional details).

Baseline drift
Another form of FC data modification attempts to correct
one of the most acute anomalies we have recognized to
date; that is changes in the background fluorescence.
Referred to as "baseline drift", we have found that some
primer pairs, in addition to sample-specific factors can
produce a progressive increase in fluorescence back-
ground. Importantly, some data processing packages
attempt to correct for fluorescence drift by adjusting the
values of the FC readings. While this can be somewhat
effective in reducing the quantitative inaccuracies pro-
duced by baseline drift, it also leads to unintended distor-
tions that remain hidden if the user is unaware of the
underlying FC manipulation (see Methods for additional
details). Baseline drift can also be quite subtle and is most
effectively recognized by visual examination of raw fluo-
rescence data before subtraction of background fluores-
cence.

Our investigation into the source of baseline drift using
SYBR Green I detection has revealed it to be a complex
phenomenon, likely generated by several mechanisms.
One clear trend is a strong primer-specific effect (Figure
10). Unfortunately, repeated attempts to identify reliable
predictors, such as sequence complementarity or second-
ary structural elements (e.g. hairpin loops) within the
primers, have to date been largely unsuccessful. Unidenti-
fied sample-specific factors have also been found to gen-
erate extensive baseline drift across multiple primer pairs
that normally do not generate baseline drift. Raising the
annealing and elongation temperature and/or diluting the
sample, as well as re-purifying the RNA before conducting
reverse transcription, have been found to reduce baseline
drifting in some cases.

Automation
LRE quantification is primarily a matter of data process-
ing. In practice, the only component that requires any sig-
nificant insight is LRE window selection. If
implementation of LRE analysis could be relegated to a
computer program, the user would only need to supply
the size of the amplicon and an optical calibration factor
in order to complete the quantification. A prototypic Java
program (additional file 4) supports this contention by
automating start cycle selection and optimizing LRE win-
dow size using the recursive approach described earlier.
This program brings together all of the elements of LRE
quantification, providing the opportunity to examine the
interrelationships between LRE window selection, the
Page 18 of 28
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Assessment of quantitative accuracy via Limiting Dilution Assay (LDA)Figure 9
Assessment of quantitative accuracy via Limiting Dilution Assay (LDA). (A) Log2 plot of LRE vs. LDA quantifica-
tions. (B) Numerical summary. R2: linear correlation coefficient, %Diff: difference expressed as a percentage of LDA-No.
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QT 0XSG
Target LDA-No LRE-No %Diff

CHS K3K4 7,050 6,143 -12.9%
SE K2K3 4,854 4,828 -0.5%
PHB K3K2 3,354 2,951 -12.0%
EMF2 K2K3 2,998 2,301 -23.2%
NPR1 K1K4 1,839 1,872 1.8%
ANT K3K4 1,094 970 -11.3%
FLF K3K4 490 661 34.8%
HAP3C K3K4 235 145 -38.2%
ABI3 K3K4 135 66 -51.3%
AP3 K3K4 62 38 -39.0%
Lec2 K3K4 12 6 -50.9%

Average Difference: 25.1%

QT 0.2XSG
Target LDA-No LRE-No %Diff

CHS K3K4 7,050 7,323 3.9%
SE K2K3 4,854 5,444 12.2%
PHB K3K2 3,354 3,292 -1.8%
EMF2 K2K3 2,998 3,256 8.6%
NPR1 K1K4 1,839 1,973 7.3%
ANT K3K4 1,094 1,390 27.0%
FLF K3K4 490 553 12.8%
HAP3C K3K4 235 198 -15.6%
ABI3 K3K4 135 105 -22.1%
AP3 K3K4 62 52 -15.7%
Lec2 K3K4 12 14 20.2%

Average Difference: 13.4%

DyNa 0.5XSG
Target LDA-No LRE-No %Diff

CHS K3K4 7,050 5,658 -19.7%
SE K2K3 4,854 5,103 5.1%
PHB K3K2 3,354 2,646 -21.1%
EMF2 K2K3 2,998 3,094 3.2%
NPR1 K1K4 1,839 1,565 -14.9%
ANT K3K4 1,094 756 -31.0%
FLF K3K4 490 466 -5.0%
HAP3C K3K4 235 254 8.0%
ABI3 K3K4 135 129 -4.1%
AP3 K3K4 62 61 -1.2%
Lec2 K3K4 12 12 5.3%

Average Difference: 10.8%

DyNa 1.5XSG
Target LDA-No LRE-No %Diff

CHS K3K4 7,050 8,500 20.6%
SE K2K3 4,854 6,363 31.1%
PHB K3K2 3,354 3,733 11.3%
EMF2 K2K3 2,998 2,752 -8.2%
NPR1 K1K4 1,839 1,657 -9.9%
ANT K3K4 1,094 1,139 4.1%
FLF K3K4 490 596 21.5%
HAP3C K3K4 235 255 8.7%
ABI3 K3K4 135 122 -9.7%
AP3 K3K4 62 34 -45.0%
Lec2 K3K4 12 12 7.7%

Average Difference: 16.2%

FV 2.0XSG
Target LDA-No LRE-No %Diff

CHS K3K4 7,050 11,598 64.5%
SE K2K3
PHB K3K2 3,354 2,956 -11.9%
EMF2 K2K3
NPR1 K1K4 1,839 2,334 26.9%
ANT K3K4 1,094 1,446 32.1%
FLF K3K4
HAP3C K3K4
ABI3 K3K4 135 48 -64.4%
AP3 K3K4 62 22 -64.6%
Lec2 K3K4 12 9 -23.9%

Average Difference: 26.2%
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resulting F0 and N0 values, and the predicted FC values gen-
erated by the LRE model. This includes the ability to man-
ually adjust the LRE window, to change the associated Ct
value by adjusting the fluorescence threshold, and to enter
values for the OCF and amplicon size (Figure 11). Entry of
an FC dataset via pasting from clipboard also provides lim-
ited data processing capabilities.

Comparison to other automated data processing packages
To further examine the performance capabilities of LRE,
the automated LRE quantification provided by the proto-
typic Java program was compared to two other publicly
available automated data processing packages, which also
analyze the FC readings generated by individual amplifica-
tion reactions. The first called LinReg, has become a com-
monly used package for determining amplification
efficiency without the use of a standard curve, and
employs linear regression analysis of the log-linear region
present within the lower region of an amplification pro-
file. Based upon the presumption that amplification effi-
ciency is constant within this region, amplification
efficiency is determined from the slope of a Log(FC) vs.
cycle plot, with target quantity (F0) determined by the
intercept, that is, when cycle = 0 [12]. The second package
called Miner [15] determines amplification efficiency via
nonlinear regression using the same exponential model
upon which LinReg is based. Miner also generates a Ct
value based upon a dynamic fluorescence threshold (Ft).

Although Miner does not provide an F0 value, equation 13
allows a F0 value to be calculated using the amplification
efficiency, Ft and Ct values generated by Miner.

The approach taken for the comparison was to select a sin-
gle, representative amplification profile for each of the
eleven cDNA targets, across all five assay formulations.
This provided a total of 55 amplification profiles for anal-
ysis, which are provided in additional file 5. Each amplifi-
cation profile was then subjected to automated analysis
by each of the three packages using default values, from
which an amplification efficiency estimate and an F0 value
were obtained (additional file 6). The ultimate objective,
however, was to assess the absolute quantitative accura-
cies by comparison to the LDA quantifications presented
in Table 3. In order to accomplish this, it was first neces-
sary to conduct individual optical calibrations for each of
the three analysis packages, in order to compensate for the
biases specific to each package. Most notable is that both
LinReg and Miner generated amplification efficiency esti-
mates that were generally lower than that produced by
LRE (additional file 6). All of the lambda gDNA amplifi-
cation profiles (additional file 7) were thus subjected to
analysis by each of the three packages, producing an opti-
cal calibration factor specific to each analysis package for
each of the five assay formulations. F0 values were then
converted to the number of target molecules using the cor-
responding OCF, as summarized in additional file 6.

An example of primer-specific baseline driftFigure 10
An example of primer-specific baseline drift. An extreme example of baseline drift produced by lambda primer K30. (A) 
Amplification profiles of 100 femtograms of lambda gDNA with K23 and K30 primers (blue profile), K30 alone with no lambda 
gDNA (green profile) and K23 alone with no lambda gDNA (red profile) with no baseline subtraction. (B) The same profiles 
following baseline subtraction (Fb = average FC of cycles 7–18). This illustraties the distortions that can be produced by the 
MxPro software used in this study, which attempts to correct for the baseline drift by modifying the FC dataset. This can com-
promise, sometimes severely, the efficacy of LRE quantification, even in the absence of any apparent baseline drifting (data not 
shown)

A. B.

Baseline subtraction: OFF Baseline subtraction: ON
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Figure 12 provides a summary of the comparison, in
which the quantifications produced by each package are
compared to the LDA quantification via Log2 plots. Over-
all, Java-LRE performed the best, producing an average r2
value of 0.984, while Miner and LinReg produced average

r2 values of 0.942 and 0.922, respectively. Differences in
performance become more apparent when the quantita-
tive differences are expressed as the percentage of LDA
quantity, as presented in additional file 6. Both Miner and
LinReg performed less well, producing 2.4X and 6.1X

Screen shot of a prototypic Java program that automates LRE quantificationFigure 11
Screen shot of a prototypic Java program that automates LRE quantification. Made up of several panels that bring 
together all of the components of LRE quantification, this program allows the interrelationships of each component and their 
impact on the calculated target quantity to be examined. 1. Lists the FC dataset. 2. The LRE plot which allows manual adjust-
ment to the LRE window (denoted by circles). 3. The F0 plot from which target quantity is derived by averaging the F0 values 
within the LRE window (denoted by red circles). 4. Numerical summary with the red lettering denoting the FC readings encom-
passed by the LRE window. 5. The FC plot which compares actual (dots) to predicted (circles) FC, with the red circles denoting 
the FC readings encompassed by the LRE window. 6. Ct determination based upon user-selected fluorescence threshold based 
on linear regression analysis of the log-linear region of the amplification profile (implementation details available from the cor-
responding author upon request). 7. Target quantification where the number of target molecules is calculated based upon four 
parameters: average F0 taken from 3, whether the target is double or single stranded, the amplicon size, and the optical calibra-
tion factor (OCF) (see text for details). Conversion of Ct to N0 via F0 is also included, which allows the quantitative differences 
between LRE- and Ct-based quantification to be assessed. 8. Buttons provide the ability to paste a FC dataset from the clip-
board and to initiate automated analysis ("Paste & Analyze"), or to repeat the automated analysis on the current FC dataset 
("Reanalyze"), or to reset the FC dataset to the default provided with the program ("Reset"). 9. Provides a summary presented 
as a dialog box that that can be copied to clipboard and pasted into Excel.
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Page 21 of 28
(page number not for citation purposes)



BMC Biotechnology 2008, 8:47 http://www.biomedcentral.com/1472-6750/8/47

Page 22 of 28
(page number not for citation purposes)

Comparison of automated LRE quantification with LinReg and Miner via comparison to LDA quantificationFigure 12
Comparison of automated LRE quantification with LinReg and Miner via comparison to LDA quantification. 
Amplification profiles for each of the five enzyme formulations representative of all eleven transcripts (additional file 5) were 
subjected to analysis with: (A) Java-LRE analysis using the prototypic Java program that automates LRE analysis (additional file 
4) (B) LinReg which determines amplification efficiency and F0 via linear regression using the FC readings within the log-linear 
region. (C) Miner which determines amplification efficiency using non-linear regression of the log-linear region, along with Ct 
values based upon a dynamic Ft. The resulting F0 values converted to the number of target molecules (N0) via optical calibration 
(see text). The quantities produced by each of the three methods are compared to the absolute quantification generated by 
limiting dilution assay (Table 3) via Log2 plots. Based on the resulting r2 values, LRE produced the highest quantitative accuracy 
for all five a formulations.
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greater variance, respectively, than Java-LRE (additional
file 6).

Discussion
What should be expected from real-time quantitative 
PCR?
Often for historical reasons expectations for quantitative
PCR can differ greatly, and can be influenced as much by
personal perspective as by methodological considera-
tions. The plethora of choices currently available for
detection chemistry, enzyme formulation, cycling regime
and instrumentation provide many compelling examples.
It is not uncommon, for example, for widely differing pro-
tocols to be applied to seemingly identical applications,
with little or no supporting evidence that any single assay
design is superior. Exacerbated by a profound lack of
standardization, it is not surprising that many reports cau-
tion about the limitations of real-time qPCR [28,37-39].

Evaluating real-time qPCR technologies is further compli-
cated by the fact that performance expectations can be
highly context dependent, and that the application of per-
formance standards (if any) can vary as widely as context.
Biomedical diagnostics, for example, provide many
poignant scenarios in which assay performance super-
sedes assay design. Without verifiable accuracy and relia-
bility, methodological details can become immaterial.
Arguably, gene expression analysis often represents the
other extreme where, for reasons of technical simplicity,
transcript quantities are frequently expressed as relative
differences. In addition to providing a very limited quan-
titative context, relative quantification provides little or
no opportunity to assess quantitative accuracy.

Despite a broad range of performance expectations, it
should be evident that absolute qPCR can enhance the
efficacy of any quantitative assay, irrespective of context.
Not only does absolute quantification impart a universal
perspective that facilitates data interpretation, it also
allows assay performance to be defined in absolute terms.
Furthermore, absolute quantification allows decoupling
of target quantification from assay implementation, such
that quantitative data generated by disparate assay designs
and/or data processing methodologies can be directly
compared.

Notwithstanding the apparent utility of absolute quantifi-
cation, the technical complexity and resources required by
current protocols is daunting. Not only has this greatly
impeded broad adoption of absolute quantification, the
complexities of implementing even the most basic quan-
titative assay hinders access to real-time qPCR technolo-
gies, particularly for casual users. Furthermore, the
necessity for constructing target-specific standard curves

severely limits both the efficacy and capacity of absolute
quantification.

Founded on recognition that PCR amplification is inher-
ently sigmoidal, this study describes methodologies that
provide effective, and in some cases simple solutions for
conducting absolute quantification without standard
curves. Utilizing a kinetic-based approach, LRE analysis
can be applied to any SYBR Green I-based assay, with few
qualifications other than that the FC datasets be of reason-
able quality. LRE quantification does not rely on user-sup-
plied standards and, if automated data processing is
implemented, requires little or no training beyond that
required for preparing amplification reactions. Particu-
larly in view of the impact that absolute qPCR could have
on a broad range of applications, these attributes alone
provide a compelling argument for moving beyond the
historical, often dogmatically held concepts that have per-
sisted since the introduction of real-time qPCR. Key to this
endeavor is to develop an effective understanding of the
fundamental principles of absolute quantification, many
of which transcend details of assay design and data analy-
sis methodology.

The two founding principles of absolute quantification
Despite the seemingly complex mix of technologies and
methodologies, absolute quantification requires measure-
ment of only two fundamental parameters – amplifica-
tion kinetics and quantitative scale – regardless of
detection chemistry, enzymology or instrumentation.
Historically, this has been accomplished by constructing
target-specific standard curves, in which amplification
efficiency is derived from the slope and quantitative scale
is derived from the intercept [9].

Amplification efficiency determination
Assessing amplification kinetics has long been recognized
as a major factor impacting qPCR, due to the fact that
errors in amplification efficiency determination can lead
to large quantitative errors. Nevertheless, early real-time
qPCR protocols simplified target quantification by assum-
ing amplification efficiency to be identical for all ampli-
cons and all samples [40]. Indeed, although the slope of a
standard curve provides an estimate of amplification effi-
ciency, a similar assumption must still be made; that is
that the amplification efficiencies of all samples are iden-
tical, or at least similar, to that predicted by a standard
curve. Thus, even if a standard curve can be effectively
constructed, quantitative accuracy cannot be ensured due
to the potential for sample-specific factors to reduce
amplification efficiency. This can be a major concern, par-
ticularly for samples originating from sources known to
contain inhibitory compounds, such as for environmental
samples and for many types of biomedical samples. This
deficiency alone would be expected to exclude real-time
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qPCR from a potentially large category of applications,
where unidentified quantitative errors cannot be toler-
ated. LRE analysis provides a fundamental solution to this
issue, through the ability to monitor amplification effi-
ciencies within individual amplification reactions.

Notwithstanding the innate limitations of standard curve-
based quantification, the implications of amplification
efficiency determination extend beyond issues of quanti-
tative accuracy, playing a predominant role in the opera-
tional component of real-time qPCR. Amplification
kinetics is determined by a combination of reaction setup
and cycling regime. Thus, amplification efficiency must be
determined for every new amplicon, and re-determined if
changes are made to reaction setup and/or cycling regime.
As such, difficulties in determining amplification effi-
ciency limit the number of targets and reaction conditions
that can be tested. Under this context it becomes apparent
that LRE confers operational attributes important to
developing reliable, high-capacity qPCR applications,
which are beyond what are possible using current technol-
ogies. For example, LRE analysis allows performance
assessments to be based on amplification of bona fide
samples, as opposed to the common practice of using arti-
ficial targets such as plasmids or oligos, and with a capac-
ity limited only by the number of amplification reactions
that can be run. Of a more fundamental nature is the
potential to extend performance assessment beyond
amplification efficiency, to what could be termed as
"assay robustness". This could allow assay performance to
encompass parameters such as resilience to inhibitors
and/or response to changes in cycling regimes (e.g. short
annealing and elongation times), which are only two
among many possible examples.

Derivation of absolute scale via optical calibration
Although it is generally recognized that amplification effi-
ciency can be derived from the slope of a standard curve,
little or no attention has been given to the fact that the
intercept establishes absolute scale by relating DNA mass
to reaction fluorescence intensity [9]. Recognition of this
fundamental principle presents a simple solution to the
greatest limitation associated with conducting high-capac-
ity absolute quantification using current protocols, which
is reliance on target-specific standards. Based on the pre-
sumption that SYBR Green I generates similar fluores-
cence intensity for all amplicons, lambda gDNA can be
exploited as a universal quantitative standard for estab-
lishing absolute scale, using a simple, standardized proto-
col referred to as optical calibration [18]. Furthermore, by
relegating establishment of quantitative scale to a univer-
sal standard, error of scale is restricted to a single, well-
defined entity.

Importantly, utilization of optical calibration is not lim-
ited to sigmoidal-based quantification. Ct-based quantifi-
cation can utilize the same strategy if Ct values are
converted into F0. This can be accomplished using the flu-
orescence threshold in combination with the Emax derived
from LRE analysis (equation 13). Additionally, when the
fluorescence threshold is not fixed [9], the impact of inter-
run differences in Ct values are eliminated, as differences
in Ft are compensated for during the conversion of Ct to F0.
Finally, it should be noted that even though the principles
of optical calibration described here have been developed
using SYBR Green I, Swillens et al. (2004) describe an
optical calibration methodology for hydrolysis probes
that correlates fluorescence intensity to probe mass [34].
This suggests that probe-based assays could also imple-
ment optical calibration for conducting absolute quantifi-
cation.

Assay validation via limiting dilution assay
For any analytical technique, the ultimate performance
benchmarks are accuracy and reliability. The relevancy of
this to real-time qPCR is particularly evident in view of the
large number of available choices for detection chemistry,
enzyme formulation and instrumentation, all of which
generates an enormous number of options to choose
from. Indeed, many choices are based on the presumption
of superior performance, even at the expense of reducing
the practicalities of assay implementation and/or of
increased cost. However, despite the many claims of supe-
rior performance, the paucity of supporting evidence can
be striking.

Limiting dilution assay provides a fundamental, poten-
tially universal solution to the dilemma of how to effec-
tively assess quantitative accuracy, through the ability to
conduct absolute quantification independent of real-time
qPCR. LDA is simple to conduct, is independent of the
kinetic and optical parameters upon which real-time
qPCR is founded, does not require a quantified standard
and is intrinsically self validating. As such, LDA provides
potential solutions to the long-standing challenge of
effectively determining true differences in assay perform-
ance, whether comparing reaction formulation, instru-
mentation, or as is the case for this study, data processing
models. In view of the multitude of choices that currently
confounds real-time qPCR, LDA could be instrumental to
establishing standards in which absolute accuracy is the
hallmark of assay performance.

Conclusion
Founded upon a new paradigm for real-time qPCR, this
study introduces several novel concepts and methodolo-
gies that extend the fundamental capabilities of absolute
quantification. Most notable is the ability to monitor
amplification kinetics within individual amplification
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reactions, providing the capability to reveal sample-spe-
cific inhibition that would otherwise generate unidenti-
fied quantitative errors. In addition, utilizing lambda
gDNA for optical calibration not only eliminates reliance
on target-specific standard curves, but as well, contributes
to the standardization of real-time qPCR by centralizing
the provision of quantitative scale to a single, highly
defined, universal quantitative standard. Exploiting limit-
ing dilution assay for absolute quantification provides the
capability to independently evaluate absolute accuracy,
irrespective of assay methodology, which could also con-
tribute greatly to the standardization of real-time qPCR
technologies. In relation to operational issues, LRE pro-
vides several attributes that facilitate large-scale absolute
quantification, with the potential to extend assay per-
formance to include the general concept of assay robust-
ness. Ultimately, however, the ability to automate LRE
quantification is most illustrative of the potential for
developing high-capacity applications, reducing the
resources required for conducting absolute quantification
to little beyond that needed for reaction preparation.

Methods
SigmaPlot (Version 8) was used to generate the plots pre-
sented in Figure 1 was derived from an arbitrarily selected
FC dataset amplification profile using the SCF method
[18], which produced: k = 1.51, C1/2 = 21.02, Fmax =
10,837, Fb = 0. LRE analysis was conducted with MS Excel
using the templates provided in additional file 2. Nonlin-
ear correlation coefficients of predicted fluorescence pro-
files presented in the prototypic Java program (Figure 11)
were calculated over the range of cycles encompassed by
the LRE window using the equation:

where FC is reaction fluorescence and FP is the predicted
reaction fluorescence at cycle C, with Fav being the average
reaction fluorescence generated by the cycles encom-
passed by the LRE window.

RNA extracted from 6-day-old Arabidopsis seedlings was
reverse transcribed using oligo dT and Superscript II (Inv-
itrogen) at a concentration of 100 ng total RNA per μl,
using the manufacturer's recommended reaction condi-
tions except that no RNase H treatment was conducted.
Following 10X dilution in 10 mM Tris to a final concen-
tration of 10 ng total RNA per μl, aliquots of the reverse
transcriptase reaction were stored at -20°C.

Three different enzyme formulations were used in this
study: QuantiTect (Qiagen), FullVelocity (Stratagene) and
DyNAmo (Finnzymes, distributed by New England
BioLabs). SYBR Green I quantity is expressed in units des-

ignated by the manufacturer (Invitrogen). SYBR Green I
was diluted to the appropriate quantity using ddH20
before addition to the PCR master mix just prior to ampli-
fication reaction preparation. Based upon the relative
increase in Fmax as SYBR Green I quantity was increased
(Figure 2), the quantity of SYBR Green I in all three com-
mercial enzyme formulations can be estimated to be
about 0.1–0.2X. The highest quantity of SYBR Green I
tested in this study is thus estimated to be 10X above that
typically found in commercial enzyme formulations used
for real-time qPCR.

Initiated by selecting an amplicon position near to 3' end
of each target transcript using the stop codon as a general
landmark, primer design was primarily based upon select-
ing a primer length that generated a predicted Tm = 70°C
using FastPCR (Institute of Biotechnology, University of
Helsinki, Finland) with parameters set to 0.05 M KCl,
0.05 M (NH4)2SO4, 0.0025 M MgCl2 and 500 nM primer
concentration. Although amplicon size was restricted to
80–150 bp, no regard was given to spanning introns or to
predicted secondary structures within the primers. Four
amplicons were generated for each target transcript by
pairing two 5' and two 3' primers. In addition to exploit-
ing the high capacity provided by LRE analysis for assess-
ing primer pair performance, this approach allowed
quantitative accuracy to be broadly tested by the level of
correlation generated from each of the four amplicons.
This was particularly effective for identifying single nucle-
otide polymorphisms which can generate large quantita-
tive errors produced by disrupting primer annealing to the
target. Although this may not be a significant factor for
highly characterized genomes, this approach can be effec-
tive for verifying quantitative accuracy for disparate spe-
cies and/or new genotypes (see Results for additional
details). For this study a single amplicon was selected for
each target (Table 4).

Replicate amplification sets consisting of four 5.0 μl reac-
tions in low profile tubes sealed with ultra clear caps
(ABgene) were taken from a 25 μl master mix containing
the target and 500 nM of each primer. For transcript quan-
tifications, the target consisted of an aliquot of the diluted
reverse transcriptase reaction containing the equivalent of
10 ng total RNA per amplification reaction, or for optical
calibration, lambda gDNA (New England BioLabs) at a
quantity specified in Figure 6, amplified with the lambda
primers K7B-K12 (Table 4). All amplifications were con-
ducted with a Mx3000P spectrofluorometric thermal
cycler (Stratagene) using a two temperature cycling regime
initiated with a 15 min activation at 95°C, followed by 50
cycles of 120 s annealing and elongation at 65°C for
QuantiTect and DyNAmo or 70°C for FullVelocity and a
10 s denaturation at 95°C. To increase optical precision,
three fluorescent reads were taken at the end of the
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annealing and elongation step and the average used as an
estimate of reaction fluorescence. Specificity of amplifica-
tion was confirmed by melting curve analysis conducted
at the end of each run.

It is important to note that the Stratagene MxPro-
Mx3000P v3.00 software used in this study was found to
generate anomalous fluorescence background subtrac-
tion, as a result of including into the baseline average of
4–6 cycles after amplicon DNA first becomes detectable.
This necessitated manual adjustment for each profile, of
the region used to estimate baseline fluorescence. Addi-
tionally, as illustrated in Figure 10, this version of the
MxPro software also attempts to correct for baseline drift-
ing by modifying the value of each FC readings, a data
manipulation process that cannot be disabled. This neces-
sitated manual background subtraction as implemented
in the Excel template used for LRE quantification (addi-
tional file 2). Note also that Cikos et al. (2007) reported
problems with background subtraction with their
Mx3000P platform which required them to conduct SCF
analysis using raw fluorescence data [31].

Limiting dilution assays were conducted for each tran-
script target, using a master mix prepared from the reverse
transcriptase reaction diluted to generate a predicted tar-
get quantity of 0.5–1 molecules per 5.0 μl amplification
reaction. Dilutions were prepared in 10 mM Tris using sil-
iconized microfuge tubes, and were based upon LRE
quantification of the originating reverse transcriptase reac-
tion. Amplifications were conducted identically to that
used for LRE quantification, and the number of nil reac-
tions scored, based upon a lack of an amplicon produc-
tion. Although production of primer dimers was nearly
absent across the eleven targets examined in this study, in
rare cases when reactions produced primer dimers during
late cycles (> 40 cycles) they were scored as negative reac-
tions. Note that all N0 quantifications in this study are
expressed as the number of target molecules per 10 ng
total RNA.
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Additional material

Additional file 1
Derivation of the two sigmoidal functions describing PCR amplification. 
A Microsoft Word summary of the rearrangements and substitutions used 
for conversion of the classic Boltzmann four parameter sigmoid function 
into a form in which PCR amplification can be modeled, based upon 
amplification dynamics as described by ΔE and Emax (equation 3).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1472-
6750-8-47-S1.doc]

Additional file 2
LRE data processing templates. The Excel templates used for manual data 
processing required for optical calibration and cDNA quantification.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1472-
6750-8-47-S2.xls]

Additional file 3
LRE data summary. An Excel summary of the LRE analysis, including all 
of the calculations used to derive the number of molecules for eleven 
cDNA targets amplified using five enzyme formulations.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1472-
6750-8-47-S3.xls]

Additional file 4
Prototype Java program for conducting automated LRE analysis. Java pro-
gram that automates LRE quantification; requires the latest Java(TM) SE 
Runtime Environment available for installation at java.com.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1472-
6750-8-47-S4.jar]

Table 4: cDNA targets and PCR primers.

Acronym Locus Tag 5' Primer 3' Primer Size (bp) Amplicon%GC

LAM LAMCG K7B: CTGCTGGCCGGAACTAATGAATTTATTGGT K12: ATGCCACGATGCCTCATCACTGTTG 150 50.0%
K23: TCTGGCTACGTCCTGATGCAGGG K30 : TTCCTGAGACAATACAGCACGACCGCTG 150

CHS AT5G13930 K3: CACGACAGGAGAAGGGTTGGAGT K4: GCGTAGGTAGGTAGGCAGATAGAAGGC 132 53.0%
SE AT2G27100 K3: AGCTACCAAGACCTAGATGCTCCAGAG K2: CGGGATCTCTCTAGCCCTGTCTTGT 88 48.9%

PHB AT2G34710 K3: TCAAGCATGGGAAGGATGGTATCTTACGA K2: AAGCTAAGCAGTGGTTTGATTCATCGTCTTCA 85 45.9%
EMF2 AT5G51230 K3: GGAGAGTGTTTATGGTGAAACTGTGGAACC K2: GGAGCTGTTCGAGAAAGGTATTACAGTTGTTC 87 47.1%
NPR1 AT1G64280 K1: GAAATTCGTCCCTGACAGATTCGACTTCT K4: CACTAAGAGGCAAGAGTCTCACCGAC 110 48.2%
ANT AT4G37750 K3: CGGATCAAATATGGGCGGAAATATGAGTCCTT K4: TCAAGAATCAGCCCAAGCAGCGAAAAC 118 48.3%

FLF/FLC AT5G10140 K3: CACCTGCTGGACAAATCTCCGACAA K4: TCATAATTATATATGTTTTGGATTTTGATTTCAACCGCCG 107 40.2%
HAP3C AT2G37060 K3: GATTACGCCGCCCAGCTCAAGA K4: GCGATGGAAGAATTTTAATTATCTGGCGAGGATTTAGG 122 45.9%

ABI3 AT3G24650 K3: CCCACCGTCGTCAGCAGCTAC K4: TCATTTAACAGTTTGAGAAGTTGGTGAAGCGAC 115 47.0%
AP3 AT3G54340 K3: CCATGGCCTTCATGCACCCTCT K4: ACTAAATAATTAGATAGACAATGATGGCACCAGCAAACC 110 40.0%
LEC2 AT1G28300 K3: TCCTCAATGACACCTGAGGATCACG K4: GGGTTATGAACTTGAGAACTTCCACCACCATA 113 48.7%
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