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Abstract

Background: We demonstrate the feasibility of creating a pair of reference samples to be used as surrogates for
clinical samples measured in either a research or clinical laboratory setting. The reference sample paradigm presented
and evaluated here is designed to assess the capability of a measurement process to detect true differences between
two biological samples. Cell-based reference samples can be created with a biomarker signature pattern designed in
silico. Clinical laboratories working in regulated applications are required to participate in proficiency testing programs;
research laboratories doing discovery typically do not. These reference samples can be used in proficiency tests or as
process controls that allow a laboratory to evaluate and optimize its measurement systems, monitor performance over
time (process drift), assess changes in protocols, reagents, and/or personnel, maintain standard operating procedures,
and most importantly, provide evidence for quality results.

Results: The biomarkers of interest in this study are microRNAs (miRNAs), small non-coding RNAs involved in the
regulation of gene expression. Multiple lung cancer associated cell lines were determined by reverse transcription
(RT)-PCR to have sufficiently different miRNA profiles to serve as components in mixture designs as reference
samples. In silico models based on the component profiles were used to predict miRNA abundance ratios between two
different cell line mixtures, providing target values for profiles obtained from in vitro mixtures. Two reference sample
types were tested: total RNA mixed after extraction from cell lines, and intact cells mixed prior to RNA extraction.
MicroRNA profiling of a pair of samples composed of extracted RNA derived from these cell lines successfully replicated
the target values. Mixtures of intact cells from these lines also approximated the target values, demonstrating potential
utility as mimics for clinical specimens. Both designs demonstrated their utility as reference samples for inter- or intra-
laboratory testing.

Conclusions: Cell-based reference samples can be created for performance assessment of a measurement process from
biomolecule extraction through quantitation. Although this study focused on miRNA profiling with RT-PCR using cell
lines associated with lung cancer, the paradigm demonstrated here should be extendable to genome-scale platforms
and other biomolecular endpoints.
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Background
The translation of a biomarker from discovery to clinical
practice involves a transition from the research-oriented
approach of the discovery laboratory to a procedure in
an accredited clinical laboratory. However, most pub-
lished cancer biomarkers never make it into clinical
practice [1], with recent work highlighting the irrepro-
ducibility of results [2]. Demonstrating that methodology
is accurately transferred is critical to the biomarker val-
idation process. This process can be conceptualized by
multiple phases of biomarker development [3]. Within
the framework of the Early Detection Research Network
(EDRN) of the National Cancer Institute [4], we are
developing a measurement assurance paradigm for the
first phase of this process, preclinical exploratory studies.
Quality measurements during this phase are essential for
the success of all subsequent phases of biomarker
development.
Preclinical studies to develop cancer biomarkers typic-

ally involve comparing measurement results from tumor
tissue to normal tissue and identifying features that
distinguish the two classes. Reference samples, with
known differences, enable laboratories to demonstrate
their ability to detect potential biomarkers. Ideally, these
biomarkers would be measured in one or more biofluids
and provide a means for non-invasive screening at the
earliest stages for the detection of cancer. Two EDRN
laboratories are assessing microRNAs (miRNAs) found
in sputum as potential biomarkers, which is the context
for designing mixture reference samples described in the
present paper.
MicroRNAs are a class of small non-protein-coding

RNAs that regulate the expression of hundreds of target
genes, controlling biological functions involved in differ-
entiation and development [5]. Dysregulation of miRNA
expression may contribute to cancer development and
progression [6]. Therefore, miRNAs are potential candi-
dates as useful biomarkers.
Three cell lines with relatively different expression

profiles for five miRNAs of interest were assessed as
potential mixture components to create a pair of refer-
ence samples to act as surrogates for sputum samples
measured in a non-invasive screening assay for lung can-
cer. Lung cancer cell lines from the NCI-H series (H226,
H358, and H460) [7] were profiled for the expression of
miR-21 [8], miR-126 [9], miR-210 [10], miR-375 [11],
and miR-486 [12]. These miRNA were selected based
upon their putative roles in cancer and previous screen-
ing results of the BDL that found that three of these
miRNA (miR-21, miR-210, and miR-375) were overex-
pressed and two (miR-126 and miR-486) were underex-
pressed when comparing lung cancer and normal tissue,
providing a potential panel of biomarkers for early
detection [13, 14].
The miRNA profile of each reference sample need not
mimic a particular biological state (i.e., normal or
disease), but should provide the ability to assess tech-
nical performance of the measurement process used to
discriminate based on the particular set of miRNAs of
interest. Ideally, these reference samples should possess
the following properties: 1) express all or most of the
biomarkers of interest; 2) be regenerable for use over
time as a process control; 3) be amenable to identical
processing as clinical samples; 4) contain well-
established relative differences in the biomarkers of
interest; and 5) be commutable between measurement
systems. Such samples could be used to assess repeat-
ability within, and reproducibility between, laboratories
for the entire measurement process.
In the first part of this study, a “crossover” design

was used to assess reproducibility of miRNA profiles
and parse out factors contributing to variability (see
Fig. 1). Two different EDRN sites participated: one a
biomarker development laboratory (BDL) engaged in
clinical research; and the other a Clinical Laboratory
Improvement Amendments (CLIA) compliant and
College of American Pathology (CAP) accredited bio-
marker reference laboratory (BRL). Each laboratory
used the same source of cells, which were grown in
the core cell facility of the BRL. A standard operating
procedure for RNA isolation was developed by the
BRL for both laboratories, meeting the CLIA stan-
dards of the BRL. Each site measured the same set of
miRNAs of interest using reverse transcription PCR
(RT-PCR). Both sites measured these miRNAs in the
total RNA samples they isolated, as well as those iso-
lated at the other site, on three separate occasions.
Datasets from each site were subsequently analyzed at
the National Institute for Standards and Technology
(NIST). This design permits evaluation of interlabora-
tory variability due to either RNA extraction or
miRNA measurement.
To inform the design for the two reference samples,

the miRNA measurements for each cell line were used
to predict the ratio of miRNA abundance between sam-
ples formed by mixing the component cell lines in differ-
ent proportions [15, 16]. To determine whether the
mixture design was fit-for-purpose, the predicted ratios
were compared with corresponding measurements from
reference mixture samples prepared by two different
methods: mixing total RNA extracted from the cell lines
in the BRL, and mixing the cell lines before total RNA
isolation by the BRL (see Fig. 2). The first approach
provides RNA samples suitable for assessing each lab’s
ability to measure differential expression using their RT-
PCR process. The second design provides reference sam-
ples suitable for assessing the entire measurement
process of a lab.



Fig. 1 Experimental workflow with sample crossover for miRNA profiling of cell lines providing four different measurement scenarios, indicated
by pathways 1–4, for comparison of laboratory effects (see also Additional file 1: Table S2)
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Methods
Cell culture
Cell Lines were obtained from the American Type Culture
Collection (ATCC®), Manassas, VA. H226 (ATCC# CRL-
5826), H358 (ATCC# CRL-5807), and H460 (ATCC#
HTB-177) were the cell lines selected by the biomarker
discovery laboratory (BDL) [13, 14]. The core cell culture
facility for the biomarker reference laboratory (BRL)
expanded the cells and provided frozen cell pellets in
RNAlater (Life Technologies, Grand Island, NY). Briefly,
cells were thawed fresh at the lowest possible passage (< 25
passages) for each new batch, using the standard thawing
method in 37 °C and dilution with culture medium into a
new culture flask. The day after thawing, medium was re-
placed to completely remove residual DMSO. Cells did not
exceed 80 to 85% confluence during cell expansion. T-225
flasks were seeded with 2.5 to 5.0 million cells, dependent
on each cell line’s growth characteristics. Cells were
harvested using the standard PBS wash and trypsinization
procedure. Recovered cells were counted 3X with an auto-
mated cell counter. For the initial profiling phase, a suffi-
cient number of cells were expanded to provide for three
separate isolations per lab. Separate expansions were
performed to provide cells for the RNA mixture experi-
ments and the cell line mixture experiments.

RNA isolation
The BRL developed the following standard operating
procedures for the isolation of total RNA enriched for
miRNA from the cell pellets using the Qiagen miRNeasy
Mini Kit. Briefly, cells are lysed in a denaturing buffer
containing phenol / guanidine-thiocyanate designed to
inhibit RNases to ensure the purification of intact RNA
from cellular DNA and proteins. Samples are homoge-
nized using the QIAShredder columns. Ethanol is then
added to the sample to precipitate the RNA, and the
sample is applied to an RNeasy mini spin column, where
the RNA binds to the silica-based membrane. After
washing contaminants away, RNA is eluted from the
membrane in RNase-free water. Each lab performed
three separate RNA isolations on different days on each
component cell line.

RNA mixtures
For total RNA mixtures, a 3-component design with a
1:1 component and two reciprocal 3:1 components were



Fig. 2 Experimental workflow for evaluating use of mixtures introduced at different stages (shaded boxes) of the miRNA profiling process with
three different measurement scenarios, indicated by pathways 5–7, providing source material comparisons (see also Additional file 1: Table S2)
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used. Total RNA isolated by the BRL was quantified
using an Agilent BioAnalyzer and mixed by mass in the
following proportions: Mix1 (1:3:1) and Mix2 (3:1:1),
using H226, H358, and H460, respectively. In silico
modeling was used to design the mixtures, selecting the
cell line mixing proportion to use for each component
that provided a useful distribution of ratios across the
dynamic range (see Results).

Cell line mixtures
For cell line mixtures, intact cells were collected during
log phase growth and counted in triplicate with an auto-
mated cell counter. Cells were then mixed (count:count:-
count) in the same proportions as the RNA mixtures:
Mix1 (1:3:1) and Mix2 (3:1:1), using H226, H358, and
H460, respectively.

RT-PCR measurement
For miRNA profiling of cell lines, each lab measured the
RNA isolated within their lab as well as the RNA
isolated by the other lab using RT-PCR. Human (Hsa-)
specific kits (Applied Biosystems, Foster City, CA) for
miR-16 (#000391), miR-21 (#000397), miR-126
(#002228), miR-210 (#000512), miR-486 (#001278), miR-
375 (#000564) were used for reversed transcription to
cDNA. The TaqMan miRNA assays were performed
using an ABI 7900 HT (Applied Biosystems, Foster City,
CA) in the BRL and an IQ5 Multicolor Real-Time PCR
Detection System (Biorad Laboratories, Hercules, CA) in
the BDL. The same RT-PCR protocol was used for
miRNA profiling of mixtures from RNA components or
cell line components.

In silico modeling
Each analyte (among miR-21, miR-126, miR-210, miR-
375, and miR-486) was modeled independently accord-
ing to the following analysis. From the individual cell
lines, let Yceip denote the average of three Cq measure-
ments from within a single plate for RNA extracted from
cell line c (c = 1, 2, 3; 1 = H226, 2 = H358, 3 = H460)
during extraction replicate e (e = 1, 2, 3) at isolation lab
i (i = 1, 2; 1 = BDL, 2 = BRL) and measured at PCR lab p
(p = 1, 2; 1 = BDL, 2 = BRL). Under the assumption that
miRNA abundance should be additive and linear, we can
predict a Cq value for a hypothetical sample reflecting a
designed mixture of the component cell line samples
using the following equation:
M̂meip ¼ − log2
X3

c¼1
2−Y ceip � ϕcm ð1Þ

where M̂meip is the predicted Cq measurement at PCR
lab p of designed mixture m (m = 1, 2) hypothetically
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created by combining the samples from isolation repli-
cate e at isolation lab i at relative concentrations of ϕ1m,
ϕ2m, and ϕ3m for component cell lines H226, H358 and
H460, respectively. We refer to each of the four combi-
nations of isolation lab and PCR lab as a different meas-
urement process.
Statistical modeling
Data collected throughout the described experiments were
analyzed in a Bayesian framework to evaluate the uncer-
tainty related to average Cq values or their differences
(e.g., average ΔCq values). For each target miRNA in turn,
the observed Cq values were analyzed using mixed effects
models that include a fixed mean for each of 18 distinct
combinations (see Additional file 1: Table S1) of source
material, measurement method and target, as well as ran-
dom effects for plate and isolation. The modeled average
Cq values were used to evaluate and compare average
ΔCq values (Mix1–Mix2) for seven different measurement
scenarios (see Additional file 1: Table S2).
Modeling results are presented in terms of marginal

likelihoods, rather than posterior probabilities, to reduce
the influence of subjective choices for prior distributions.
A marginal likelihood reflects the chance of the
observed data occurring assuming a particular value for
a model parameter of interest (e.g., average Cq, average
ΔCq, or difference in average ΔCq), after integrating
across the modeled distribution of all other model
parameters. We examine peak shapes formed by plotting
marginal likelihood as a function of the value of the par-
ameter of interest to assess whether or not particular
factors appear to contribute to bias in these results. This
approach is used to assess differences in Cq responses
between samples (Mix1 vs. Mix2), laboratories (BDL vs.
BRL), or source material (in silico vs. RNA vs. cells). In
these plots, a value of 0 along the x-axis indicates “no
difference” for the comparison while deviation from zero
indicates a possible bias.
To examine the sensitivity of the reported results to

modeling choices, the entire analysis was repeated
using three model perturbations. All models were fit
using Markov Chain Monte Carlo (MCMC) via the R
package rjags [17, 18]. MCMC is a computational tool
commonly used in Bayesian analysis that relies on
simulation over many iterations to approximate closed-
form computations that are difficult to evaluate because
they involve complicated probability distributions. An
introduction to Bayesian analysis in the context of the
presented experiment and additional details of the three
considered models are provided in the Additional file 1.
The interested reader may also find a vast collection of
more general references for Bayesian theory and prac-
tice, including the use of MCMC; see for instance [19].
Datasets and R code used to conduct the analysis are
provided in Additional files 2, 3, 4 and 5.

Results
Relative miRNA expression levels in different cell lines
The expression profiles of five miRNAs of interest (miR-
21, miR-126, miR-210, miR-375, and miR-486) [13, 14]
and one control (miR-16) across three different cell lines
were measured by both the BRL and BDL. Each labora-
tory performed three separate RNA isolations per cell
line, split their samples and shared them with the other
site. Each laboratory then used their own RT-PCR
methods to measure the miRNA profiles of both sets of
samples. This cross-over approach was used to deter-
mine if robust differences in miRNA abundance were
consistently observed among the four possible measure-
ment processes resulting from all combinations of isola-
tion laboratory and PCR laboratory (see Fig. 1).
Throughout this paper, the term Cq value refers to the
average Cq (taken over 3 replicate wells) for a given
miRNA in a given cell line, evaluated for each isolation
and each process.
An analysis of variance (ANOVA) was performed

on the Cq values in phase 1 (RNA extracted from
pure cell lines). Fig. 3 shows the factors with the
greatest mean squares (i.e., sum of squares divided by
corresponding degrees of freedom). As expected, the
biologically relevant factors of analyte, cell line and
their interaction are the three most prominent com-
ponents of variability. The confounding factor with
the greatest attributed variability in Cq values was
which lab conducted PCR analysis.
When evaluating log abundance ratios (i.e., differences

in Cq values) across cell lines (or cell line mixtures), only
the interactions involving cell line will matter. This is
because effects that remain constant across cell lines will
cancel when taking the difference (e.g., increasing the
Cq value by 0.5 for all PCR measurements conducted at
BRL will not impact the estimated log abundance ratio
of a given miR between any two cell lines). From this
perspective, the most substantial source of confounding
variability is the factor associated with the interaction
among analyte, cell line and PCR lab, which contributes,
on average, about an order of magnitude less variability
than do any of the biologically-relevant factors.
Figure 4a shows there was concordance among the

four processes with respect to which of the miRNAs
of interest were more abundant (lower Cq) in each
cell line: H358 cells had the highest expression for
miR-21 and miR-210; H226 cells had the highest ex-
pression of miR-126; and H460 cells had the highest
expression of miR-375. Both H358 and H460
expressed similar levels of miR-486. MiR-21 also ap-
peared more abundant in samples isolated by the BRL
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Fig. 3 Sources of variance in the miRNA profiling dataset. An analysis of variance in R [17] was used to identify the major sources of variability in
the miRNA profiling of three cell lines by two laboratories using a cross-over design (see Fig. 1). A five-way ANOVA, testing all possible interactions, was
applied to determine the contribution to variance by analyte, cell line, isolation laboratory, isolation process, and PCR laboratory. The input data for the
model was the Cq for each of the four measurement processes for three isolations. The mean of squares is plotted on the y-axis on a log10 scale and is
a measure of the average contribution of each factor or interaction to the variability in the experiment. Factors or interactions with a mean of squares less
the one are not included. White bars correspond to biological factors or interactions, black bars correspond to laboratory factors or interactions, and grey
bars correspond to interactions between biological and laboratory factors
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than from the BDL (red symbols and black symbols,
respectively). Both miR-126 and miR-486 showed
more difference with respect to which lab performed
the PCR measurements, BDL (open symbols) or BRL
(filled symbols). Both miR-375 and miR-486 had Cq
values around 35 in H226 cells, a value indicating
either single molecule detection or noise [20], indicat-
ing minimal, if any signal contribution to the final
mixtures. Overall, expression levels were sufficiently
different between H226, H358, and H460 to proceed
to in silico modeling for mixtures. ANOVA results of
laboratory factors after the datasets are parsed by an-
alyte and cell line are available in Additional file 6.
Two different mixture designs were selected on the

basis of iterative in silico modeling via Eq. 1. The re-
sults from each iteration were viewed as a Bland-
Altman plot or difference plot [21], where the pre-
dicted measurement difference between two mixtures
is plotted as a function of the predicted average of
measurements for both mixture. Mixture fractions of
ϕ11 = 0.2, ϕ21 = 0.6, ϕ31 = 0.2 were selected for mix-
ture design 1 (Mix1); and ϕ12 = 0.6, ϕ22 = 0.2, ϕ32 =
0.2 for mixture design 2 (Mix2). This design predicted
a useful distribution of analyte abundances across the
dynamic range as well as ΔCq (Mix1 – Mix2) be-
tween the samples ranging from − 1 to 1, i.e., two-
fold up and down as shown in Fig. 4b.
Each measurement process demonstrated a consist-
ent rank order of miRNA with respect to average
Cq. Although the smallest difference in that dimen-
sion was observed between miR-126 and miR-375,
the mixing design still predicted a useful separation
between those two miRNAs with respect to ΔCq.
The isolation lab differences observed with miR-21
in Fig. 4a produce a similar trend in Fig. 4b for the
modeled mixtures, where the samples isolated in the
BRL are predicted to be more abundant (lower aver-
age Cq) than those from the BDL. Because this trend
was similar for each cell line, the modeled ΔCq are
nearly the same (see also Fig. 9, In Silico). The
trends for the PCR lab differences observed in Fig.
4a for miR-126 and miR-486 vary across combina-
tions of cell line and analyte (see ANOVA results in
Fig. 3 corresponding to interaction among analyte,
cell line and PCR lab), so the modeling predicts the
average of both Cq and ΔCq will be affected (see
also Fig. 9, In Silico). The modeled mixtures, as
shown in Fig. 4b, provided a sufficiently unique
pattern of differences to proceed with preparation of
actual mixtures of total RNA.

Reference samples of total RNA mixtures
Four separate total RNA isolations per cell line from
separate expansions were performed in the BRL and
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Fig. 4 Expression profiling of miRNAs of interest in candidate cell lines. Panel a shows the Cq values for each miRNA and measurement scenario
(see Fig. 1). Total RNA samples were isolated in the BDL (black symbols) and BRL (red symbols) on three separate occasions (circles, squares, and
triangles). RT-PCR results are from BDL (open symbols) and BRL (filled symbols), where the black line corresponds to the mean Cq for all isolation
and PCR combinations. Horizontal jitter added for display purposes. Panel b is a Bland-Altman plot (or difference plot) of relative abundance, where ΔCq =
Mix1 – Mix2 and the Cq values are predicted in silico from PCR measurements made in either the BDL (open symbols) or BRL (filled symbols) using pure
total RNA profiles of component cells from each isolation (circles, squares, and triangles) performed in the BDL (black symbols) or BRL (red symbols) using
Eq. 1 and the mixture design described in the Results. X-axis is in reverse order to indicate direction of relative abundance (i.e., lower Cq values indicates
more starting material). Similarly, y-axis is in reverse order to indicate that a negative ΔCq corresponds to more starting material in Mix1 than Mix2
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each isolation was used to prepare a single Mix1 and
Mix2 pair (see Fig. 2) using the cell line mixture frac-
tions selected from the in silico modeling. Mixture sam-
ples were each measured in triplicate at both PCR labs
(see Fig. 5a). Both PCR laboratories detected a lower
amount of miR-486 in Mix1 and lower amounts of miR-
21 and miR-210 in both RNA mixtures derived from the
fourth isolation (diamond symbols). This observed effect
could be attributable to differences in growth conditions
for the cell expansion used for the fourth isolation.
However, the observed differences between Mix1 and
Mix2 remained comparable with the sample design. For
example, the average (± SD) ΔCq for three replicate
plates of miR-21 measured in the BDL was − 1.03 ± 0.11,
a

Fig. 5 Expression profiling of miRNAs of interest in RNA mixtures. Panels a and
show the Cq values for total RNA mixtures and cell line mixtures, respectively. M
concentration, using pure total RNA isolated in the BRL (see Fig. 2, scenarios 5 a
Fig. 2, scenario 7) on four separate occasions (circles, squares, triangles, and diam
were split and measured in triplicate plates (black, red, and blue) by RT-PCR in b
from each set of cell line mixture pairs and then measured by RT-PCR in triplica
− 0.67 ± 0.16, − 0.85 ± 0.12, and − 0.69 ± 0.15 for isola-
tions 1, 2, 3 and 4, respectively.
An ANOVA was performed on the Cq values in phase

2 (RNA mixtures). In this phase, all isolations occurred
at the BRL, which precludes further assessments of vari-
ability due to isolation lab. Figure 6a shows the factors
with the greatest mean of squares. Analyte was the most
prominent component of variability. The confounding
factors corresponding to which lab conducted PCR ana-
lysis and differences among the four replicate isolations
were the next most prominent sources of variability.
The most substantial sources of confounding variability
with respect to evaluating log abundance ratios across
mixtures are the interactions between mixture and
b

b
ix1 and Mix2 were prepared volume:volume:volume, normalized for
nd 6) or count:count:count from intact cells grown in the core facility (see
onds). Each set of RNA mixture pairs (e.g. Mix1 circles and Mix2 circles)
oth the BDL and BRL. For the cell line mixtures, only the BRL extracted RNA
te plates. Horizontal jitter added for display purposes
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Fig. 6 Sources of variance in the total RNA mixture dataset. An analysis of variance in R [17] was used to identify the major sources of variability
in measuring 4 RNA mixture pairs by two laboratories (see Fig. 2, pathways 5 and 6). A four-way ANOVA, testing all possible interactions, was
applied to determine the contribution to variance by analyte, mixture, isolation process, and PCR laboratory. In panel a, the input data for the
model was the Cq for each of the miRNA measured by each PCR laboratory for each mixture prepared from four isolations (see Fig. 5, panel a). In
panel b, the input data was the ΔCq between each mixture from the same dataset. The mean of squares is plotted on the y-axis on a log10 scale
and is a measure of the average contribution of each factor or interaction to the variability in the experiment. Factors or interactions with a mean
of squares less the one are not included. White bars correspond to biological factors or interactions, black bars correspond to laboratory factors
or interactions, and grey bars correspond to interactions between biological and laboratory factors
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isolation and between mixture and PCR lab. The degree
of variability attributed to mixture and the interaction
between mixture and analyte are largely controlled by
the designed abundance ratios resulting from the chosen
cell line proportions for each mixture. Figure 6b corre-
sponds to an ANOVA conducted on ΔCq (Mix1 –
Mix2) values. The designed differences in ΔCq values
across the five analytes represent the most prominent
component of variability.

Reference samples from cell line mixtures
To test the feasibility of using cell lines as surrogate
samples, the three component cell lines were combined
in the previously provided Mix1 and Mix2 proportions
based upon cell counts to create four separate mixture
pairs of cell suspensions. The mixture samples were then
processed in triplicate by the BRL in the same manner
as cells in a clinical specimen (see Fig. 5b). A PCR plate
effect was observed for miR-21 and miR-126 when mix-
tures were considered separately. However, the observed
differences between Mix1 and Mix2 remained com-
parable with the sample design. For example, the
average (± SD) ΔCq for four isolations of miR-126
measured in the BRL was 0.56 ± 0.22, 0.55 ± 0.26, and
0.55 ± 0.30, for plates 1, 2, and 3, respectively.

Detecting differences between reference sample pairs
Figure 7 shows the results for measuring the difference be-
tween samples applied to all data derived from either in
silico modeled mixes, RNA mixes, or cell mixes using two
different methods. The delta Cq (ΔCq) method was used to
directly measure the relative difference between Mix1 and
Mix2 using the mean Cq values from each miRNA target
summarized by process (isolation lab, PCR lab, and sample
type). In the delta-delta Cq (ΔΔCq) method [22], each Cq
value for a miRNA target was adjusted to produce a ΔCq
by subtracting the Cq value corresponding to miR-16 de-
rived from the same sample (i.e., subject to the same ex-
perimental conditions of isolation, PCR lab) and measured
on the same plate. The miR-16 adjusted values for each
mixture were then compared (ΔΔCq). Figure 7a shows the
distribution of relative abundance and differences in a plot
similar to Fig. 4b, with the x-axis normalized to the average
miR-21 Cq value. Examining the residuals highlights there
is more variability in the average relative Cq than in the
ΔCq (Fig. 7b). This is consistent with the ANOVA results
shown in Figs. 3 and 6, which suggest the most prominent
sources of confounding variation will cancel out when tak-
ing differences to compute ΔCq values. Additionally, for
these data, using miR-16 as a control (ΔΔCq method) did
not substantially reduce variability among multiple mea-
surements of log abundance ratios compared to those de-
rived directly from the Cq values of miRNA targets (Fig. 7,
panels c and d compared to panels a and b, respectively).

Discussion
To characterize potential biases between labs, Fig. 8
portrays the marginal likelihood for the difference in



a b

c d

Fig. 7 Average difference in relative abundance between Mix1 and Mix2 for all measurement scenarios (see Figs. 1 and 2). Panel a is the Bland-Altman
plot of relative abundance where ΔCq =Mix1 – Mix2 and Cq values are rescaled relative to the average miR-21 value. Panel c is the Bland-Altman plot
of relative abundance of Mix1 and Mix2 compared with ΔΔCq result obtained when using miR-16 as the control [22]. Panels b and d display residuals
from panels a and c, respectively (i.e., data for each miRNA are re-centered around corresponding black cross seen in panels a and c, respectively). The
black cross denotes center of all values for a particular method of calculation (either ΔCq or ΔΔCq) for each miRNA. Summarized values for each
miRNA were compared for each analysis method across the three samples: in silico mixes, RNA mixes, and cell mixes (circles, squares, and triangles,
respectively). RNA isolations were performed in either the BDL (black symbols) or BRL (red symbols) and analyzed by RT-PCR in the BDL (open symbols)
or BRL (filled symbols). Y-axis is in reverse order to indicate that a negative ΔCq corresponds to more starting material in Mix1 than Mix2
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a b

Fig. 8 Evaluation of differences in average ΔCq (Mix1–Mix2) between measurement scenarios differing only by measurement or isolation lab. The
y-axis reflects the marginal likelihood (normalized so that the maximum is one). Panel a data based on average Cq values inferred for mixtures 1
and 2 derived using Eq. 1 and the average Cq of component cell lines. Isolation lab effect determined by the average difference in ΔCq corre-
sponding to samples isolated at BDL versus those isolated at BRL, for the in silico mixtures. PCR lab effect determined by the average difference
in ΔCq corresponding to samples measured at BDL versus those measured at BRL, for the in silico mixtures. Panel b data based on mixtures of
RNA isolated and prepared in the BRL. PCR lab effect determined by the average difference in ΔCq corresponding to samples measured at BDL
versus those measured at BRL. Black, red, and blue lines correspond to model variations 1, 2, and 3, respectively, as described in Additional file 1
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average ΔCq values (Mix1 – Mix2) among six measure-
ment scenarios that share source material but differ in
either PCR lab or isolation lab, the seventh scenario
using cell line mixtures was only measured by one lab
(see Figs. 1 and 2 and Additional file 1:Table S2). In
panel a, in silico modeling of Mix1 and Mix2 (see
Methods) was used to predict ΔCq values, and the dif-
ferences in the predicted ΔCq values between the BDL
and BRL, either as the isolation lab or as the PCR lab,
were used to assess laboratory bias for those two steps
of the measurement process. These modeling efforts
suggest that the likelihood of the observed data is largest
under models for which biases between isolation labs are
near zero, supporting a hypothesis that different labs iso-
lating RNA from the same source can provide material
with similar miRNA ratio profiles.
The likelihoods of the observed data for miR-21, miR-

210, and miR-375, respectively, are largest under models
for which biases due to PCR lab are near zero. However,
for both miR-126 and miR-486 and for both the in silico
mixtures (Fig. 8a) and the RNA mixtures (Fig. 8b), the
likelihoods are largest under models for which the aver-
age ΔCq value corresponding to PCR measurements
conducted at the BDL are roughly 0.5 greater than the
average ΔCq value corresponding to PCR measurements
conducted at the BRL. These interpretations are consist-
ent with the spatial separation observed in Fig. 4b when
comparing open symbols (BDL) and filled symbols
(BRL) for miR-126 and miR-486.
If the measurements in phases 1 and 2 had been

deemed insufficiently reproducible, additional measure-
ments could be obtained to confirm the apparent biases
along with efforts to identify differences in how PCR
measurements were conducted at each lab for each com-
bination of cell line and either miR-126 or miR-486. For
the proof-of-concept purposes of the present study, the
exhibited reproducibility was deemed adequate and no
further attempts were made to investigate or control the
observed variability.
Although the source material for each of these measure-

ment scenarios was obtained from different expansions of
the cell lines, the direction of fold-change between sam-
ples for each target miRNA is consistent and the order of
relative abundance is the same among the miRNA targets:
miRNA-486 <miRNA-375 <miRNA-126 <miRNA-210 <
miR-21 (see Fig. 7).
To characterize potential biases in ΔCq among source

materials, Fig. 9 portrays the marginal likelihood for the
average ΔCq values (Mix1 – Mix2) among the seven
measurement scenarios. The top row of graphs is based
on the in silico modeled ΔCq values from the cell line
profiles, and the bottom row includes both the RNA
mixtures and cell line mixtures. In each plot, the height
of the likelihood curve reflects the chance of the



Fig. 9 Comparison of average ΔCq (Mix1 – Mix2) across experimental workflows. The y-axis reflects the marginal likelihood (normalized so that
the maximum is one). The top row of graphs compares ΔCq results from model 1 across measurement processes (see Fig. 1) using in silico mod-
eled Cq values (see Eq. 1) for each mixture. Black and red lines correspond to samples isolated at BDL and BRL, respectively. Dashed and solid
lines correspond to RT-PCR measurements from BDL and BRL, respectively. The bottom row of graphs compares ΔCq results from model 1 between
mixture paradigms (see Fig. 2). Red lines correspond to RNA isolated in the BRL then mixed, blue lines correspond to RNA isolated in the BRL after
mixing cells. Dashed and solid lines correspond to RT-PCR measurements from BDL and BRL, respectively
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observed data occurring given a model for which the
true average ΔCq value is fixed at the corresponding
value along the x-axis, after integrating across the mod-
eled distribution of all other model parameters. For each
miR, the peaks are either all above or all below zero, cor-
roborating that the direction of change (negative or posi-
tive ΔCq) is consistent for each miRNA across all source
material and measurement combinations. For miR-210
and miR-375, all seven peaks appear to substantially
overlap meaning there is little evidence of bias among
any of the measurement scenarios. For miR-126 and
miR-486, there appears to be some peak separation be-
tween measurement scenarios that differ with respect to
which lab conducted PCR but strong overlap among
peaks corresponding to measurement scenarios that dif-
fer only by source material. The greatest variability in
average ΔCq associated with source material appears to
occur within miR-21, and, even then, the peaks still
overlap. This statistical analysis does not conclusively in-
dicate that all three source materials produce equivalent
ΔCq values on average, nor does it conclusively refute
that claim. That is, using cell lines as a regenerable
source for designing cell and RNA mixture reference
materials exhibits potential and warrants further study.
The reported results based on marginal likelihoods ap-

pear consistent across the three considered variations of
the statistical model, indicating they are not unique to
one specific subjective modeling choice. Further consid-
eration of additional models not evaluated in this ana-
lysis may produce results that differ substantially.
Analyzing additional samples would further reduce the
uncertainty underlying these assessments.
To the extent that variability in average ΔCq among the

source materials may be present, some of this difference
might be due to drift in cell line profiles, since cells used
for in silico modeling were cultured several months before
those used to produce the RNA and cell mixtures and the
individual cell lines were not separately profiled again at
the time the mixtures were prepared. Preparing a suffi-
ciently large “batch” of each cell line from one expansion
to partition into source material for individual cell line
profiles, total RNA mixtures, and cell line mixtures might
reduce variability among observed ΔCq values for each
analyte. In addition, determining the miRNA fraction per
cell line may also allow for further refinement of the target
values derived from cell line profiles and provide a more
quantitative assessment of measurement performance. A
difference in mRNA fraction has been shown to affect the
expected log ratios in other gene expression experiments
[23]. A similar use of synthetic miRNA spike-ins intro-
duced into these RNA mixtures could help determine if
there are differences in the miRNA fraction in total RNA.
Further stabilizing ΔCq between replicate sample pairs
may require additional optimization of cell growth condi-
tions or identification of cell lines with greater differences
among the miRNA profiles.

Conclusions
Cell line mixtures can be prepared with designed-in dif-
ferences between samples in a reproducible process and
may provide suitable reference samples to assess the en-
tire measurement process from RNA extraction through
miRNA measurement. The selection of potential cell
lines may be based on previous laboratory experience
with material or derived from the literature (including
cell repository descriptions). The screening of candidate
cell lines by multiple laboratories was useful in establish-
ing robust differences in expression for a selected set of
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miRNAs. In silico modeling of these levels informed the
final mixture design for both RNA mixtures and mix-
tures of cells. Identifying cell lines with even greater dif-
ferences between miRNA profiles might allow for
mixtures that provide a broader range of designed-in ra-
tios. RNA mixtures derived from these cell lines can also
serve as well-matched reference samples for measure-
ment assurance of the post-RNA isolation stages of gene
expression measurement systems.
This testing paradigm should be generalizable to other

biomarkers and other laboratories and provide a model
for establishing both intra- and inter-laboratory meas-
urement assurance and demonstrate translatability of
biomarker assays between research development labora-
tories and clinical reference laboratories.
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