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Abstract
Background:  Infections of bacterial cultures by bacteriophages are serious problems in
biotechnological laboratories. Apart from such infections, prophage induction in the host cells may
also be dangerous. Escherichia coli is a commonly used host in biotechnological production, and
many laboratory strains of this bacterium harbour lambdoid prophages. These prophages may be
induced under certain conditions leading to phage lytic development. This is fatal for further
cultivations as relatively low, though still significant, numbers of phages may be overlooked. Thus,
subsequent cultures of non-lysogenic strains may be infected and destroyed by such phage.

Results:  Here we report that slow growth of bacteria decreases deleterious effects of
spontaneous lambdoid prophage induction. Moreover, replacement of glucose with glycerol in a
medium stimulates lysogenic development of the phage after infection of E. coli cells. A plasmid was
constructed overexpressing the phage 434 cI gene, coding for the repressor of phage promoters
which are necessary for lytic development. Overproduction of the cI repressor abolished
spontaneous induction of the λimm434 prophage.

Conclusions:  Simple procedures that alleviate problems with spontaneous induction of lambdoid
prophage and subsequent infection of E. coli strains by these phages are described. Low bacterial
growth rate, replacement of glucose with glycerol in a medium and overproduction of the cI
repressor minimise the risk of prophage induction during cultivation of lysogenic bacteria and
subsequent infection of other bacterial strains.

Background
Bacteria are widely used hosts for production of many bi-

otechnologically important substances. Among these mi-

croorganisms, Escherichia coli is one of the most

frequently used hosts for expression of recombinant

genes.

Bacteriophages are viruses that infect bacterial cells.

Thus, infection of bacterial cultures by bacteriophages
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may lead to serious problems, including complete loss of

a desired bioproduct and spreading of bacteriophages

throughout the whole laboratory. This is especially dan-

gerous when cultivations are performed on a large scale.
Moreover, a number of commonly used strains of E. coli

contain lambdoid prophages that often bear some regu-

latory genetic elements useful in the control of the ex-

pression of cloned genes. However, under certain

conditions, a prophage induction occurs that may have

similar effects on a bacterial culture as phage infection

[1,2,3]. Even under standard cultivation conditions, a

spontaneous prophage induction occurs with low fre-

quency [1,2,3]. However, this rare prophage induction

results in the appearance of infecting phage particles in

amounts ranging from 10-8 to 10-5 pfu (plaque forming

units) per bacterial cell [1,2,3]. These numbers seem to

be low, but when cultivations are performed on a large

scale, e.g. reaching 1010 cells per ml, this means from 102

to 105 phages may be present per ml. Considering even a

very small bioreactor containing one litre of the culture,

this adds up to 108 infecting phage particles. If we con-

sider a 100-litre bioreactor, the number of phages in the

medium may reach 1010.

Although spontaneous prophage induction should not be

dangerous for the culture of lysogenic bacteria due to the

immunity phenomenon, i.e. resistance of lysogenic cells

to infection by the same type of the phage [1,2], overlook-

ing the presence of phages may be fatal for further culti-
vations. Phage contamination may cause infection of

non-lysogenic cells, and subsequent lytic development of

the phage may destroy the culture and cause spreading of

large amounts of phages throughout the whole laborato-

ry.

Although bacteriophages have been considered as mod-

els in genetic and biochemical studies [1,2,3,4,5], many

physiological aspects of bacteriophage growth have not

been sufficiently investigated relative to the extensive

studies directed at other aspects of phage biology (most

notably genetic regulation). However, recent reports

have indicated that development of bacteriophages

largely depends on the physiology of the host cells

[6,7,8]. Although the above mentioned studies con-

cerned basic research rather than applications, we as-

sumed that the results of such investigations should be

useful in reducing the effects of prophage induction, and

possible subsequent bacteriophage infection, on bacteri-

al cultures. Here we present simple procedures which

should be helpful in alleviation of problems caused by

lambdoid prophage induction and possible phage con-

tamination of bacterial cultures, especially in biotechno-

logical laboratories.

Results
Effect of bacterial growth rate on spontaneous prophage 
induction
It was found previously that bacterial growth rate signif-
icantly influences lytic development of bacteriophages

T4 and λ [6,7,8,9]. We asked whether the efficiency of

spontaneous λ prophage induction is also dependent on
this parameter. Therefore, we measured the average

number of phages per cell in cultures of lysogenic bacte-

ria cultivated at different growth rates. A strain lysogenic

for phage λ cI857 S7 was used in these studies as the S7
mutation prevents cell lysis of non-suppressor bacteria.

After a sample was withdrawn, cellular membranes were

disrupted by chloroform, allowing liberation of phages.

Therefore, we could avoid a potential problem with ad-

sorption of liberated phages on other cells in the culture

and the resultant underestimation of the efficiency of

prophage induction.

We found that efficiency of spontaneous λ prophage in-
duction is significantly decreased at low growth rates of

lysogenic bacteria relative to higher growth rates (Table

1). In fact, we could detect infecting phages in the cul-

tures only when bacterial growth rate was higher than

0.6 doublings per hour.

A plasmid for abolition of spontaneous prophage induc-
tion
Spontaneous induction of lambdoid prophages usually

results from a decrease in the expression of the repressor

gene (cI), whose product blocks transcription from pro-

moters indispensable for lytic development [1,2,3].

Therefore, one could imagine that efficient overproduc-

tion of the repressor should impair spontaneous induc-

tion of the corresponding prophage. On the other hand,

it was demonstrated previously that moderate overex-
pression of the λ cI gene did not abolish spontaneous

Table 1: Spontaneous induction of λ cI857 S7 prophage in E. coli 
cells cultivated in media supporting different growth rates

Medium Growth rate (doublings 
per hour)

Frequency of spon-
taneous prophage

induction 
(phages per cell)a

LB 1.0 6.6 × 10-7

M9GluCaa 0.8 4.0 × 10-8

M9Glu 0.6 < 1 × 10-9

M9Gly 0.4 < 1 × 10-9

M9Suc 0.3 < 1 × 10-9

aThe results are average values from three measurements. In all cases, 
the standard deviation was below 10%
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prophage induction [10]. Thus, we aimed to construct a

plasmid system for overexpression of the repressor gene

sufficiently effective to block spontaneous prophage in-

duction.

Plasmid pQE30-434CI was constructed (see Materials

and methods) which contains a gene coding for phage

434 repressor under control of an IPTG-inducible pro-

moter. We found that in the E. coli strain lysogenic for

λimm434, the frequency of spontaneous prophage in-

duction in LB medium was 5.0 × 10-7 phages per cell,
whereas in bacteria overproducing the cI repressor of

phage 434 the efficiency of prophage induction was be-

low detectable levels (i.e. below 10-9 phages per cell).

Therefore, we conclude that overproduction of the cI re-

pressor of a lambdoid phage can prevent spontaneous

prophage induction and eliminate further problems

caused by subsequent phage lytic development.

Growth conditions of bacterial cultures and efficiency of 
lysogenisation by λ
In the preceding paragraphs we reported procedures for

impairment of spontaneous lambdoid prophage induc-

tion in lysogenic cells. However, if for any reason induc-

tion occurred, one should consider a possibility to

minimise problems arising from subsequent infection of

non-lysogenic strains by contaminating phages. The ef-

fects of infection by a temperate phage (like λ) on a bac-
terial culture can be reduced by increasing the frequency
of lysogenisation and decreasing the frequency of initia-

tion of phage lytic developmental pathway. It is known

that the 'lysis-versus-lysogenisation' decision depends

on the physiology of the host and that starvation and low

temperature favour lysogenisation rather than lytic de-

velopment [1,2,3]. Since starvation and low temperature

are parameters that could not be used effectively in bio-

reactors designed for efficient production of desired sub-

stances, we investigated the efficiency of lysogenisation

of bacteria growing in different media at low (i.e. 1) and

high (i.e. 10) m.o.i. The efficiency of lysogenisation was

moderate in LB medium (though higher at the higher

m.o.i.). This parameter decreased dramatically when

minimal medium was supplemented with glucose, or

glucose and Casamino acids were used (Table 2). Appar-

ently, this was due to a negative effect of glucose on pro-

duction of cAMP, which normally stimulates

lysogenisation by indirect inhibition of the degradation

of the activator of lysogenic promoters, the cII gene

product [1,2,3,11]. Replacement of glucose with another

carbon source, glycerol, significantly increased the effi-

ciency of lysogenisation (Table 2).

Discussion
Bacteriophages cause serious problems in biotechnology

laboratories. Both prophage induction and phage infec-

tion are dangerous for ongoing and subsequent cultiva-

tions. Unfortunately, many commonly used E. coli

strains harbour lambdoid prophages. We were looking

for simple procedures which could alleviate the problems

caused by lambdoid bacteriophages.

Although effects of bacterial growth rate on phage lytic

development have been investigated previously [7,8,9],

the results of these studies were used in basic research

rather than in biotechnological applications. Here we re-

port that deleterious effects of spontaneous lambdoid
prophage induction are significantly decreased at low

growth rates of lysogenic bacteria relative to high growth

rates. These differences could be caused either by a lower

frequency of prophage induction in slowly growing cells

or by a less efficient lytic development after excision of

the phage DNA from the host chromosome under condi-

tions supporting low bacterial growth rates. In fact, low

burst sizes of λ phage in slowly growing bacteria have al-
ready been reported [7,8,9]. Nevertheless, irrespective of

the specific mechanism of the observed phenomenon, it

is clear that the number of phages per cell in cultures of

slowly growing lysogenic bacteria was below the detec-

tion limit (Table 1). Thus, cultivation of lysogenic bacte-

ria in bioreactors at low growth rates should prevent

contamination of the culture with induced phages.

We demonstrated that overproduction of the cI repres-

sor from a multicopy plasmid efficiently reduces the risk

of lambdoid prophage induction. Furthermore, overpro-

duction of cI in non-lysogenic strains should make bac-

teria resistant to infection by a corresponding lambdoid

Table 2: Efficiency of lysogenisation by phage λ cI857 S7 of E. coli 
cells cultivated in different media

Medium Efficiency of lysogenisationa

m.o.i. = 1 m.o.i. = 10

LB 0.44 0.72
M9GluCaa 0.06 0.14
M9Glu 0.02 0.14
M9Gly 0.82 0.96

a An efficiency of lysogenisation of 1 would represent 100% lysogens 
among survivors and presented values reflect this value. The results 
are average values from three experiments. In all cases, the standard 
deviation was below 10%
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phage due to repression of phage early promoters, neces-

sary for lytic development. Interestingly, even moderate

overproduction of cI was also inhibitory for lysogeniza-

tion, most probably due to indirect impairment of the int
gene expression [10].

Lambdoid prophage induction can be provoked by fac-

tors stimulating the SOS response [1,2]. One could imag-

ine that certain conditions in bioreactors stimulate the

SOS response. The SOS-induced RecA* protein triggers

self-cleavage of the cI repressor, causing prophage in-

duction [2]. To avoid this problem, one can clone an ind-

allele of cI (e.g. cI857), whose product, the cI857 protein,

is resistant to RecA*-mediated self-cleavage.

Obviously, for achieving both large amounts of a desired

product from a cloned gene and prevention of lambdoid

prophage induction, one should often use a pair of com-

patible plasmids, one bearing a recombinant gene and

second overexpressing the cI gene. However, this should

not be a serious problem as many vectors bearing differ-

ent origins of replication (thus being compatible) are

currently available [12].

Glucose is the most commonly used carbon source in bi-

otechnological cultivations of E. coli. However, in ac-

cordance with previous reports [1,2,11], we

demonstrated that replacement of glucose with another

carbon source results in a significant increase in the effi-
ciency of lysogenization after infection of the host cells by

λ. Therefore, we propose to replace glucose with glycerol
in the culture medium when lambdoid phage contamina-

tion is plausible.

In conclusion, we have demonstrated that relatively low

growth rates of bacteria and replacement of glucose with

glycerol in the medium should significantly reduce dele-

terious effects of lambdoid prophage induction in E. coli

cultures. These simple procedures should alleviate prob-

lems with lamdoid phages contamination in bacterial

cultures. Moreover, spontaneous induction of lambdoid

prophage is impaired by efficient overproduction of the

cI repressor from a multicopy plasmid. If induction of

the SOS response during the cultivation is possible, we

recommend to overexpress an ind- allele of the cI gene.

Materials and methods
Bacteria, phages and plasmids
Escherichia coli wild-type strain SG20250 [13] and the

supF (tyrT) indicator strain QD5003 [14] were used.

Bacteriophages λ cI857 S7 (bearing a temperature-sensi-

tive mutation in the λ repressor gene, and a nonsense
mutation in one of the phage genes responsible for host

cell lysis) [14] and λimm434 (a λ phage bearing the im-
munity region from lambdoid phage 434; such deriva-

tives of λ are frequently used in the host strains for
controlled expression of cloned genes) (from A. B. Op-

penheim) were employed. Plasmid pQE30-434CI is a

pQE30 (Qiagen)- based construct, which was made by
cloning of the PCR fragment (produced as described be-

low) digested with BamHI and XmaI. For PCR amplifi-

cation, primers 434-L (5'-GGG GGG GAT CCT GCA CTA

GTA TTT CTT CCA GGG) and 434-R2 (5'-GGC CCC GGG

TTA GGG CCC GAA TTT TAC CCT CGC) were used and

phage λimm434 DNA served as a template. The pQE30-

434CI plasmid allows for IPTG-inducible production of

His6-tagged phage 434 repressor as evidenced by West-

ern-blotting using the Qiagen anti-His6 antibody (data

not shown). The structure of pQE30-434CI was con-

firmed by restriction mapping and DNA sequencing.

Culture media and growth conditions
Luria-Bertani (LB) and minimal M9 media [12] were em-

ployed, but the M9 medium contained different carbon

sources as follows (the resultant media were renamed

correspondingly): 2 g glucose l-1 and 10 g Casamino acids

l-1 (M9GluCaa medium), 2 g glucose l-1 (M9Glu medi-

um), 2 g glycerol l-1 (M9Gly medium) or 6 g sodium suc-

cinate l-1 (M9Suc medium). Cultivation of the SG20250

strain in these media at 30°C resulted in different growth
rates as presented in Table 1.

Efficiency of spontaneous prophage induction
Efficiency of spontaneous λ prophage induction was es-
timated as described previously [10]. Briefly, samples of

cultures of lysogenic bacteria grown at 30°C were shaken
vigorously with chloroform and, following centrifuga-

tion, liberated phages were titrated on the QD5003

strain at 37°C. Number of bacterial cells in the culture

was estimated by titration on LB plates at 30°C.

Efficiency of lysogenisation
Efficiency of lysogenisation of E. coli cells by bacteri-

ophage λ cI857 S7 was estimated as described previously

[10]. Briefly, bacteria were grown at 30°C in indicated
medium to mid- log phase. A phage lysate was added to

a sample of the culture to indicated multiplicity of infec-

tion (m.o.i.) and the mixture was incubated for 30 min at

30°C. Then, serial dilutions of the mixture in the TM

buffer (10 mM Tris-HCl, 10 mM MgSO4, pH 7.4) were

spread on LB plates and incubated overnight at 30°C.
Lysogens were identified among survivors by a temeper-

ature-sensitivity assay (cells lysogenic with λ cI857 S7
are temperature-sensitive due to thermal induction of

the prophage) and by testing sensitivity to superinfection

as described previously [10].
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